A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions

被引:30
作者
Amourah, Ala [1 ]
Alsoboh, Abdullah [2 ]
Ogilat, Osama [3 ]
Gharib, Gharib Mousa [4 ]
Saadeh, Rania [4 ]
Al Soudi, Maha [5 ]
机构
[1] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[2] Umm Al Qura Univ, Al Leith Univ Coll, Dept Math, Mecca 24231, Saudi Arabia
[3] Al Ahliyya Amman Univ, Fac Arts & Sci, Dept Basic Sci, Amman 19328, Jordan
[4] Zarqa Univ, Fac Sci, Dept Math, Zarqa 13110, Jordan
[5] Appl Sci Private Univ, Dept Basic Sci Sci, Amman 11931, Jordan
关键词
Fekete-Szego problem; q-Gegenbauer polynomials; bi-univalent functions; q-calculus; analytic functions;
D O I
10.3390/axioms12020128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three subclasses of analytic and bi-univalent functions are introduced through the use of q-Gegenbauer polynomials, which are a generalization of Gegenbauer polynomials. For functions falling within these subclasses, coefficient bounds |a(2)| and |a(3)| as well as Fekete-Szego inequalities are derived. Specializing the parameters used in our main results leads to a number of new results.
引用
收藏
页数:13
相关论文
共 28 条
[1]   Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator [J].
Aldawish, Ibtisam ;
Al-Hawary, Tariq ;
Frasin, B. A. .
MATHEMATICS, 2020, 8 (05)
[2]  
Altinkaya S., 2017, ASIA PAC J MATH, V4, P90
[3]  
Amourah A., 2021, Palestine Journal of Mathematics, V10, P625
[4]   Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials [J].
Amourah, Ala ;
Alomari, Mohammad ;
Yousef, Feras ;
Alsoboh, Abdullah .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
[5]   Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Abdeljawad, Thabet .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[6]  
Amourah A, 2021, AFR MAT, V32, P1059, DOI 10.1007/s13370-021-00881-x
[7]  
[Anonymous], 2013, Novi Sad J. Math.
[8]  
Askey R., 1983, Studies in Pure Mathematics, P55
[9]  
Babalola K.O., 2013, J. Class. Anal., V3, P137
[10]  
Bateman H., 1953, Higher Transcendental Functions. Vol. II, V1