The algebraic and geometric classification of nilpotent Lie triple systems up to dimension four

被引:5
作者
Abdelwahab, Hani [1 ]
Barreiro, Elisabete [2 ]
Calderon, Antonio J. [3 ]
Fernandez Ouaridi, Amir [2 ,3 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura, Egypt
[2] Univ Coimbra, Dept Math, CMUC, Apartado 3008, P-3001501 Coimbra, Portugal
[3] Univ Cadiz, Dept Math, Puerto Real, Spain
关键词
Nilpotent Lie triple systems; Algebraic classification; Geometric classification; Annihilator extension; Non-associative triple systems; BINARY-LIE; JORDAN ALGEBRAS; DEGENERATIONS; FIELDS;
D O I
10.1007/s13398-022-01344-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize the Skjelbred-Sund method, used to classify nilpotent Lie algebras, in order to classify triple systems with non-zero annihilator. We develop this method with the purpose of classifying nilpotent Lie triple systems, obtaining from it the algebraic classification of the nilpotent Lie triple systems up to dimension four. Additionally, we obtain the geometric classification of the variety of nilpotent Lie triple systems up to dimension four.
引用
收藏
页数:27
相关论文
共 43 条
[1]   CENTRAL EXTENSIONS OF 4-DIMENSIONAL BINARY LIE ALGEBRAS [J].
Abdelwahab, Hani ;
Calderon Martin, Antonio J. ;
Fernandez Ouaridi, Amir .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) :1541-1559
[2]   The algebraic and geometric classification of nilpotent binary Lie algebras [J].
Abdelwahab, Hani ;
Jesus Calderon, Antonio ;
Kaygorodov, Ivan .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (06) :1113-1129
[3]   Degenerations of Jordan Superalgebras [J].
Alejandra Alvarez, Maria ;
Hernandez, Isabel ;
Kaygorodov, Ivan .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) :3289-3301
[4]   On Rigid 2-Step Nilpotent Lie Algebras [J].
Alejandra Alvarez, Maria .
ALGEBRA COLLOQUIUM, 2018, 25 (02) :349-360
[5]   CONTRACTIONS OF LOW-DIMENSIONAL NILPOTENT JORDAN ALGEBRAS [J].
Ancochea Bermudez, J. M. ;
Fresan, J. ;
Margalef Bentabol, J. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (03) :1139-1151
[6]   CLASSIFICATION OF ORBIT CLOSURES IN THE VARIETY OF THREE-DIMENSIONAL NOVIKOV ALGEBRAS [J].
Benes, Thomas ;
Burde, Dietrich .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
[7]   Degenerations of pre-Lie algebras [J].
Benes, Thomas ;
Burde, Dietrich .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
[8]  
Bouetou TB, 2006, MG TXB PUR APPL MATH, V246, P41
[9]   Classification of orbit closures of 4-dimensional complex Lie algebras [J].
Burde, D ;
Steinhoff, C .
JOURNAL OF ALGEBRA, 1999, 214 (02) :729-739
[10]   On the classification of bilinear maps with radical of a fixed codimension [J].
Calderon, Antonio Jesus ;
Ouaridi, Amir Fernandez ;
Kaygorodov, Ivan .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (18) :3553-3576