Solutions to a (p1, ..., pn)-Laplacian Problem with Hardy Potentials

被引:0
作者
Razani, A. [1 ]
Safari, F. [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin 3414896818, Iran
关键词
(p(1); .; p(n))-Laplacian elliptic operator; Variational method; Hardy inequality; 2 WEAK SOLUTIONS; RADIAL SOLUTIONS; EXISTENCE; THEOREM;
D O I
10.1007/s44198-022-00089-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the existence and multiplicity of weak solutions for a general form of a (p(1), ..., p(n))-Laplacian elliptic problem including singular terms. Our approaches are mainly based on critical points theory.
引用
收藏
页码:413 / 427
页数:15
相关论文
共 34 条
[1]  
[Anonymous], 2013, ELECT J DIFFER EQ
[2]  
Badiale M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-227-8
[3]   Two Weak Solutions for a Singular (p, q)-Laplacian Problem [J].
Behboudi, F. ;
Razani, A. .
FILOMAT, 2019, 33 (11) :3399-3407
[4]   Relations between the mountain pass theorem and local minima [J].
Bonanno, Gabriele .
ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (03) :205-220
[5]   On the structure of the critical set of non-differentiable functions with a weak compactness condition [J].
Bonanno, Gabriele ;
Marano, Salvatore A. .
APPLICABLE ANALYSIS, 2010, 89 (01) :1-10
[6]  
Chaves MF., 2014, BOUND VALUE PROBL, V1, P1
[7]   SINGULAR SOLUTIONS OF A HENON EQUATION INVOLVING A NONLINEAR GRADIENT TERM [J].
Cowan, Craig ;
Razani, Abdolrahman .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (01) :141-158
[8]   SINGULAR SOLUTIONS OF A LANE-EMDEN SYSTEM [J].
Cowan, Craig ;
Razani, Abdolrahman .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (02) :621-656
[9]  
Fife P.C., 1979, LECT NOTES BIOMATHEM, V28, DOI [10.1007/978-3-642-93111-6, DOI 10.1007/978-3-642-93111-6]
[10]  
Figueiredo GM., 2021, BOUND VALUE PROBL, V1, P1