Classification of anti-symmetric solutions to the fractional Lane-Emden system

被引:3
作者
Li, Congming [1 ,2 ]
Zhuo, Ran [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, CMA Shanghai, Shanghai 200240, Peoples R China
[3] Huanghuai Univ, Sch Math & Stat, Zhumadian 463000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lane-Emden system; fractional Laplacian; maximum principle; Liouville type theorems; existence; LIOUVILLE-TYPE THEOREMS; ELLIPTIC-EQUATIONS; DIFFUSION;
D O I
10.1007/s11425-021-1952-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the anti-symmetric solutions to the Lane-Emden type system involving fractional Laplacian (-Delta)(s) (0 < s < 1). First we obtain a Liouville type theorem in the often-used defining space L-2s. An interesting lower bound on the solutions is derived to estimate the Lipschitz coefficient in the sub-linear cases. Considering the anti-symmetric property, one can naturally extend the defining space from L-2s to L2s+1. Surprisingly, with this extension, we show the existence of non-trivial solutions. This is very different from the previous results of the Lane-Emden system.
引用
收藏
页码:723 / 744
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 1998, Atti Sem. Mat. Fis. Univ. Modena
[2]  
[Anonymous], 1996, Differential Integral Equations
[3]  
Applebaum D., 2009, LEVY PROCESSES STOCH, DOI DOI 10.1017/CBO9780511809781
[4]  
Bertoin Jean, 1996, Levy processes
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]  
Busca J, 2002, INDIANA U MATH J, V51, P37
[7]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[8]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[9]   A direct method of moving planes for the fractional Laplacian [J].
Chen, Wenxiong ;
Li, Congming ;
Li, Yan .
ADVANCES IN MATHEMATICS, 2017, 308 :404-437
[10]   AN INTEGRAL SYSTEM AND THE LANE-EMDEN CONJECTURE [J].
Chen, Wenxiong ;
Li, Congming .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) :1167-1184