Predicting Ejection Fraction from Electrocardiogram Signals using a Multi-task Learning Model

被引:2
作者
Zhong, Gaoyan [1 ]
Wang, Yueyi [1 ]
Liu, Sen [1 ]
Deng, Xintao [2 ]
Wang, Aiguo [2 ]
Yang, Cuiwei [3 ]
机构
[1] Sch Informat Sci & Technol, Ctr Biomed Engn, Shanghai, Peoples R China
[2] Xinghua City Poeples Hosp, Dept Cardiol, Taizhou, Jiangsu, Peoples R China
[3] Sch Informat Sci & Technol, Ctr Biomed Engn, Key Lab Med Imaging Comp & Comp Assisted Intercen, Shanghai, Peoples R China
来源
2023 IEEE 19TH INTERNATIONAL CONFERENCE ON BODY SENSOR NETWORKS, BSN | 2023年
关键词
ejection fraction (EF); electrocardiogram (ECG); multi-task learning; Transformer; DYSFUNCTION;
D O I
10.1109/BSN58485.2023.10331174
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this study was to investigate the feasibility and effectiveness of using electrocardiogram (ECG) signals to predict ejection fraction (EF) in an extremely imbalanced dataset. We collected ECG signals from 9365 patients and conducted a correlation analysis with EF. After collecting and preprocessing the ECG signal, we developed a deep learning-based multi-task learning model designed to extract features from ECG signals and perform predictions. Our study employed a model based on Transformer, multi-scale convolutional neural networks (CNN), channel attention, and pre-trained ResNet to predict EF (EF > 50 or EF <= 50) and EF value. The experimental results demonstrate that the proposed model exhibits excellent predictive performance, with an AUC of 0.825 and MAE of 4.855 for predicting EF. It outperforms other models and shows better results in comparison. Our study validates the feasibility and effectiveness of using ECG signals to predict EF and provides strong support for early diagnosis and treatment of cardiovascular diseases.
引用
收藏
页数:5
相关论文
共 28 条
[1]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[2]   Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Yao, Xiaoxi ;
Lopez-Jimenez, Francisco ;
Mohan, Tarun L. ;
Pellikka, Patricia A. ;
Carter, Rickey E. ;
Shah, Nilay D. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (05) :668-674
[3]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[4]   Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis [J].
Chen, Hung-Yi ;
Lin, Chin-Sheng ;
Fang, Wen-Hui ;
Lou, Yu-Sheng ;
Cheng, Cheng-Chung ;
Lee, Chia-Cheng ;
Lin, Chin .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03)
[5]   Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model [J].
Chen, Tsai-Min ;
Huang, Chih-Han ;
Shih, Edward S. C. ;
Hu, Yu-Feng ;
Hwang, Ming-Jing .
ISCIENCE, 2020, 23 (03)
[6]   Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram [J].
Galloway, Conner D. ;
Valys, Alexander V. ;
Shreibati, Jacqueline B. ;
Treiman, Daniel L. ;
Petterson, Frank L. ;
Gundotra, Vivek P. ;
Albert, David E. ;
Attia, Zachi I. ;
Carter, Rickey E. ;
Asirvatham, Samuel J. ;
Ackerman, Michael J. ;
Noseworthy, Peter A. ;
Dillon, John J. ;
Friedman, Paul A. .
JAMA CARDIOLOGY, 2019, 4 (05) :428-436
[7]   Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke A Machine Learning Analysis [J].
Han, Lichy ;
Askari, Mariam ;
Altman, Russ B. ;
Schmitt, Susan K. ;
Fan, Jun ;
Bentley, Jason P. ;
Narayan, Sanjiv M. ;
Turakhia, Mintu P. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (10)
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [J].
Heidenreich, Paul A. ;
Bozkurt, Biykem ;
Aguilar, David ;
Allen, Larry A. ;
Byun, Joni J. ;
Colvin, Monica M. ;
Deswal, Anita ;
Drazner, Mark H. ;
Dunlay, Shannon M. ;
Evers, Linda R. ;
Fang, James C. ;
Fedson, Savitri E. ;
Fonarow, Gregg C. ;
Hayek, Salim S. ;
Hernandez, Adrian F. ;
Khazanie, Prateeti ;
Kittleson, Michelle M. ;
Lee, Christopher S. ;
Link, Mark S. ;
Milano, Carmelo A. ;
Nnacheta, Lorraine C. ;
Sandhu, Alexander T. ;
Stevenson, Lynne Warner ;
Vardeny, Orly ;
Vest, Amanda R. ;
Yancy, Clyde W. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (17) :E253-E421
[10]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]