The role of WRKY transcription factors in exogenous potassium (K+) response to NaCl stress in Tamarix ramosissima

被引:2
|
作者
Chen, Yahui [1 ,2 ]
Zhang, Xuanyi [1 ,2 ]
Fan, Yunlong [3 ]
Sui, Dezong [1 ]
Jiang, Jiang [2 ]
Wang, Lei [1 ]
机构
[1] Jiangsu Acad Forestry, Nanjing, Peoples R China
[2] Nanjing Forestry Univ, Collaborat Innovat Ctr Sustainable Forestry Southe, Nanjing, Peoples R China
[3] Univ British Columbia, Fac Sci, Dept Stat, Vancouver, BC, Canada
关键词
exogenous potassium (K+); halophyte; NaCl stress; transcriptome; WRKY transcription factor; SALT TOLERANCE; FACTOR GENE; SALINITY TOLERANCE; ABIOTIC STRESS; PLANT DEFENSE; NA+; OVEREXPRESSION; INDUCTION; DROUGHT; PATHWAY;
D O I
10.3389/fgene.2023.1274288
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Soil salinization poses a significant challenge to plant growth and vitality. Plants like Tamarix ramosissima Ledeb (T. ramosissima), which are halophytes, are often integrated into planting schemes tailored for saline environments. Yet, the role of WRKY transcription factors in T. ramosissima, especially under sodium chloride (NaCl) stress mitigated by exogenous K+ application, is not well-understood. This research endeavors to bridge this knowledge gap.Methods: Using Pfam protein domain prediction and physicochemical property analysis, we delved into the WRKY genes in T. ramosissima roots that are implicated in counteracting NaCl stress when aided by exogenous K+ applications. By observing shifts in the expression levels of WRKY genes annotated to the KEGG pathway under NaCl stress at 0, 48, and 168 h, we aimed to identify potential key WRKY genes.Results: We found that the expression of 56 WRKY genes in T. ramosissima roots responded to exogenous K+ application during NaCl stress at the indicated time points. Particularly, the expression levels of these genes were primarily upregulated within 168 h. From these, 10 WRKY genes were found to be relevant in the KEGG pathways. Moreover, six genes, namely Unigene0024962, Unigene0024963, Unigene0010090, Unigene0007135, Unigene0070215, and Unigene0077293, were annotated to the Plant-pathogen interaction pathway or the MAPK signaling pathway in plants. These genes exhibited dynamic expression regulation at 48 h with the application of exogenous K+ under NaCl stress.Discussion: Our research highlights that WRKY transcription factors can modulate the activation or inhibition of related genes during NaCl stress with the application of exogenous K+. This regulation enhances the plant's adaptability to saline environments and mitigates the damage induced by NaCl. These findings provide valuable gene resources for future salt-tolerant Tamarix breeding and expand our understanding of the molecular mechanisms of WRKY transcription factors in alleviating NaCl toxicity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Role of bZIP Transcription Factors in Response to NaCl Stress in Tamarix ramosissima under Exogenous Potassium (K+)
    Chen, Yahui
    Zhang, Min
    Sui, Dezong
    Jiang, Jiang
    Wang, Lei
    GENES, 2023, 14 (12)
  • [2] Analysis of Amino Acids in the Roots of Tamarix ramosissima by Application of Exogenous Potassium (K+) under NaCl Stress
    Chen, Yahui
    Zhang, Shiyang
    Du, Shanfeng
    Zhang, Xiaomian
    Jiang, Jiang
    Wang, Guangyu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [3] Effects of Exogenous (K+) Potassium Application on Plant Hormones in the Roots of Tamarix ramosissima under NaCl Stress
    Chen, Yahui
    Zhang, Shiyang
    Du, Shanfeng
    Wang, Guangyu
    Zhang, Jinchi
    Jiang, Jiang
    GENES, 2022, 13 (10)
  • [4] Transcriptome and Metabonomic Analysis of Tamarix ramosissima Potassium (K+) Channels and Transporters in Response to NaCl Stress
    Chen, Yahui
    Zhang, Shiyang
    Du, Shanfeng
    Jiang, Jiang
    Wang, Guangyu
    GENES, 2022, 13 (08)
  • [5] Effects of Exogenous Potassium (K+) Application on the Antioxidant Enzymes Activities in Leaves of Tamarix ramosissima under NaCl Stress
    Chen, Yahui
    Zhang, Shiyang
    Du, Shanfeng
    Zhang, Xiaomian
    Wang, Guangyu
    Huang, Jiefan
    Jiang, Jiang
    GENES, 2022, 13 (09)
  • [6] Analysis of the main antioxidant enzymes in the roots of Tamarix ramosissima under NaCl stress by applying exogenous potassium (K+)
    Chen, Yahui
    Li, Haijia
    Zhang, Shiyang
    Du, Shanfeng
    Zhang, Jinchi
    Song, Zhizhong
    Jiang, Jiang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [7] Multi-Omics Analysis of Exogenous Potassium (K+)'s Role in Alleviating Trehalose Effects Under NaCl Stress in Tamarix ramosissima
    Chen, Yahui
    Zhang, Shiyang
    Zhang, Min
    Sui, Dezong
    Jiang, Jiang
    Wang, Lei
    FORESTS, 2024, 15 (11):
  • [8] Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress
    Chen, Yahui
    Wang, Guangyu
    Zhang, Hongxia
    Zhang, Ning
    Jiang, Jiang
    Song, Zhizhong
    PLOS ONE, 2022, 17 (03):
  • [9] WRKY Transcription Factors in Response to Metal Stress in Plants: A Review
    Huang, Yuanzhi
    Sun, Zhaofei
    Zhou, Xiangui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [10] Role of WRKY Transcription Factors in Regulation of Abiotic Stress Responses in Cotton
    Guo, Xiaoqiang
    Ullah, Abid
    Siuta, Dorota
    Kukfisz, Bozena
    Iqbal, Shehzad
    LIFE-BASEL, 2022, 12 (09):