Design and synthesis of 3,4-seco-lupane triterpene derivatives to resist myocardial ischemia-reperfusion injury by inhibiting oxidative stress-mediated mitochondrial dysfunction via the PI3K/AKT/HIF-1α axis

被引:4
|
作者
Teng, Hongbo [1 ]
Wu, Di [2 ]
Lu, Luo [3 ]
Gao, Chunyu [1 ]
Wang, Haohao [1 ]
Zhao, Yan [1 ]
Wang, Liyan [1 ]
机构
[1] Jilin Agr Univ, Coll Chinese Med Mat, Changchun, Jilin, Peoples R China
[2] First Hosp Jilin Univ, Gen Surg Ctr, Dept Breast Surg, Changchun, Jilin, Peoples R China
[3] Drug Evaluat Ctr Jilin Prov, Changchun, Jilin, Peoples R China
关键词
3,4-seco-lupane triterpene derivatives; Myocardial ischemia-reperfusion injury; Mitochondrial dysfunction; Oxidative stress blocker; PI3K/AKT/HIF-1; alpha; ISCHEMIA/REPERFUSION INJURY; SIGNALING PATHWAY; PI3K/AKT; ANGIOGENESIS; INFLAMMATION; MECHANISMS; INFARCTION; APOPTOSIS;
D O I
10.1016/j.biopha.2023.115452
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In this study, 86 new seco-lupane triterpenoid derivatives were designed, synthesized, and characterized, and their protective activities against ischemia-reperfusion injury were investigated in vitro and in vivo. Structure-activity relationship studies revealed that most target compounds could protect cardiomyocytes against hypoxia/reoxygenation-induced injury in vitro, with compound 85 being the most active and exhibiting more potent protective activity than clinical first-line drugs. Furthermore, all thiophene derivatives exhibited stronger protective activity than furan, pyridine, and pyrazine derivatives, and the protective activity gradually increased with the extension of the alkyl chain and changed in the substituent. The data from the in-vitro and in-vivo experiments revealed that compound 85 protected mitochondria from damage by inhibiting excessive production of oxidative stressors, such as intracellular ROS, which in turn inhibited the apoptosis and necrotize of cardiomyocytes and reduced infarct size, thereby protecting normal cardiac function. It was associated with enhanced activation of the PI3K/AKT-mediated HIF-1 alpha signaling pathway. Therefore, compound 85 acts as an oxidative stress inhibitor, blocks ROS production, protects mitochondria and cells from myocardial ischemia/ reperfusion (MI/R) injury, and represents an effective new drug for treating MI/R injury.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Dexmedetomidine protects against lung ischemia-reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway
    Zhang, Wei
    Zhang, Jia-Qiang
    Meng, Fan-Min
    Xue, Fu-Shan
    JOURNAL OF ANESTHESIA, 2016, 30 (05) : 826 - 833
  • [2] MiR-506 alleviates myocardial ischemia-reperfusion injury via targeting PI3K/AKT
    Zhang, M.
    Wang, J-Y
    Li, L.
    Li, G-M
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (24) : 12896 - 12903
  • [3] Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway
    Sulaiman, Dawoud
    Li, Jingyuan
    Devarajan, Asokan
    Cunningham, Christine Marie
    Li, Min
    Fishbein, Gregory A.
    Fogelman, Alan M.
    Eghbali, Mansoureh
    Reddy, Srinivasa T.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2019, 129 : 154 - 164
  • [4] Dexmedetomidine protects against lung ischemia–reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway
    Wei Zhang
    Jia-Qiang Zhang
    Fan-Min Meng
    Fu-Shan Xue
    Journal of Anesthesia, 2016, 30 : 826 - 833
  • [5] Secreted phosphoprotein 1 exacerbates renal ischemia-reperfusion injury by inhibiting PI3K/AKT signaling pathway
    Zhang, Bokang
    Yang, Wan
    Chen, Lanren
    TISSUE & CELL, 2023, 83
  • [6] Naringin attenuates rat myocardial ischemia/reperfusion injury via PI3K/Akt pathway-mediated inhibition of apoptosis, oxidative stress and autophagy
    Li, Fengwei
    Zhan, Zhenjian
    Qian, Jin
    Cao, Chuanbin
    Yao, Wei
    Wang, Neng
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (02)
  • [7] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway
    Li, Jianli
    Wang, Keyan
    Liu, Meinv
    He, Jinhua
    Zhang, Huanhuan
    Liu, Huan
    JOURNAL OF MOLECULAR HISTOLOGY, 2023, 54 (03) : 173 - 181
  • [8] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway
    Jianli Li
    Keyan Wang
    Meinv Liu
    Jinhua He
    Huanhuan Zhang
    Huan Liu
    Journal of Molecular Histology, 2023, 54 : 173 - 181
  • [9] Sevoflurane Alleviates Myocardial Ischemia-Reperfusion Injury in Rats by Reducing Oxidative Stress and Activating PI3K/Akt/GSK3β Signaling Pathway
    Zhang, Zhengbing
    Luo, Chunfang
    Wan, Caiyun
    Xu, Kai
    Huang, Fang
    Feng, Yinghui
    Li, Ming
    Min, Wei
    LATIN AMERICAN JOURNAL OF PHARMACY, 2020, 39 (02): : 394 - 400
  • [10] Intralipid Induces Cardioprotection against Ischemia-Reperfusion Injury by Inhibiting the Mitochondrial Permeability Transition Pore Opening Via the PI3K/AKT Pathway
    Rahman, Siamak
    Bopassa, Jean Chrisostome
    Li, Jingyuan
    Umar, Soban
    Ciobotaru, Andrea
    Partownavid, Parisa
    Eghbali, Mansoureh
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 716A - 717A