Performance Enhancement of Algan- Based Deep Ultraviolet Laser Diodes with Step Superlattice Electron Blocking Layer and Wedge-Shaped Hole Blocking Layer

被引:1
作者
Zhang Aoxiang [1 ]
Ren Bingyang [2 ]
Wang Fang [1 ,3 ,4 ,5 ]
Juin, Liou J. [1 ,3 ,5 ]
Liu Yuhuai [1 ,3 ,4 ,5 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Natl Ctr Int Joint Res Elect Mat & Syst, Int Joint Lab Elect Mat & Syst Henan Prov, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ, Inst Intelligent Sensing, Zhengzhou 450001, Henan, Peoples R China
[4] Zhengzhou Way Do Elect Co Ltd, Zhengzhou 450001, Henan, Peoples R China
[5] Zhengzhou Univ, Res Inst Ind Technol Co Ltd, Zhengzhou 450001, Henan, Peoples R China
关键词
lasers; deep ultraviolet laser diodes; AlGaN; step supperlattice; blocking layers; LIGHT-EMITTING-DIODES; EFFICIENCY; INJECTION;
D O I
10.3788/LOP221886
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The step superlattice ( SSL) electron blocking layer (EBL) and wedge- shaped (WS) hole blocking layer ( HBL) are proposed to improve the carrier injection efficiency, and optimize the performance of the deep ultraviolet laser diodes (DUV LDs). The Crosslight software is used to simulate the DUV LDs with rectangular EBL and HBL, rectangular superlattice ( RSL) EBL and tower- shaped (TS) HBL, and SSL EBL and WS HBL, respectively. The simulation results indicate that SSL EBL and WS HBL increase the carrier injection in the quantum wells ( QWs), reduce the carrier leakage in the non-active regions, increase radiation recombination rate, reduce the threshold voltage and threshold current, and increase the output power and the electro-optical conversion efficiency of DUV LDs more effectively.
引用
收藏
页数:8
相关论文
共 42 条
[1]  
[常奕栋 Chang Yidong], 2021, [发光学报, Chinese Journal of Luminescence], V42, P1040
[2]   Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer [J].
Chen, P. ;
Feng, M. X. ;
Jiang, D. S. ;
Zhao, D. G. ;
Liu, Z. S. ;
Li, L. ;
Wu, L. L. ;
Le, L. C. ;
Zhu, J. J. ;
Wang, H. ;
Zhang, S. M. ;
Yang, H. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
[3]   Efficient High-Power Laser Diodes [J].
Crump, Paul ;
Erbert, Goetz ;
Wenzel, Hans ;
Frevert, Carlo ;
Schultz, Christoph M. ;
Hasler, Karl-Heinz ;
Staske, Ralf ;
Sumpf, Bernd ;
Maassdorf, Andre ;
Bugge, Frank ;
Knigge, Steffen ;
Traenkle, Guenther .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
[4]   Characteristics of polarization-doped N-face III-nitride light-emitting diodes [J].
Dong, Kexiu ;
Chen, Dunjun ;
Liu, Bin ;
Lu, Hai ;
Chen, Peng ;
Zhang, Rong ;
Zheng, Youdou .
APPLIED PHYSICS LETTERS, 2012, 100 (07)
[5]   Improvement in efficiency and luminous power of AlGaN-based D-UV LEDs by using partially graded quantum barriers [J].
Gupta, Himanshu ;
Ahmad, Shameem ;
Kattayat, Sandhya ;
Kumar, Dheeraj ;
Dalela, Saurabh ;
Siddiqui, M. J. ;
Alvi, P. A. .
SUPERLATTICES AND MICROSTRUCTURES, 2020, 142
[6]   Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses [J].
Hadi, Joshua ;
Dunowska, Magdalena ;
Wu, Shuyan ;
Brightwell, Gale .
PATHOGENS, 2020, 9 (09) :1-30
[7]   Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes [J].
Hai, X. ;
Rashid, R. T. ;
Sadaf, S. M. ;
Mi, Z. ;
Zhao, S. .
APPLIED PHYSICS LETTERS, 2019, 114 (10)
[8]  
Heilingloh Christiane Silke, 2020, Am J Infect Control, V48, P1273, DOI 10.1016/j.ajic.2020.07.031
[9]   Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer [J].
Huang, Hsin-Hsuan ;
Chu, Sheng-Yuan ;
Kao, Po-Ching ;
Chen, Yung-Chen ;
Yang, Ming-Ru ;
Tseng, Zong-Liang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 479 (1-2) :520-524
[10]   The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J].
Kneissl, Michael ;
Seong, Tae-Yeon ;
Han, Jung ;
Amano, Hiroshi .
NATURE PHOTONICS, 2019, 13 (04) :233-244