Irradiation damage on CrNbTaVWx high entropy alloys

被引:0
作者
Martins, R. [1 ]
Correia, J. B. [2 ]
Czarkowski, P. [3 ]
Miklaszewski, R. [3 ]
Malaquias, A. [1 ]
Mateus, R. [1 ]
Alves, E. [1 ]
Dias, M. [1 ]
机构
[1] Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] LNEG Lab Nacl Energia & Geol, Estr Paco Lumiar, P-1649038 Lisbon, Portugal
[3] Inst Plasma Phys & Laser Microfus IFPiLM, 23 Hery Str, PL-01497 Warsaw, Poland
关键词
Plasma facing components; High entropy alloys; Irradiation damage; Melting; Swelling; PERFORMANCE; RETENTION; STABILITY; BEHAVIOR; SURFACE; HELIUM;
D O I
10.1016/j.nimb.2023.03.010
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
CrNbTaVWx high-entropy alloys have been developed for plasma facing components to be applied in nuclear fusion reactors. The CrNbTaVWx (x = 1 and 1.7) compositions were prepared by ball milling and consolidated at 1600 degrees C under 90 MPa. To study the irradiation resistance of these materials, deuterium plasmas were used to irradiate the samples in the PF-1000U facility with 1 and 3 discharges. Structural changes before and after irradiation were analyzed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Nuclear reaction analysis was carried out with 1000 and 2300 keV 3He+ ion beams to evaluate the profile and amount of retained deuterium on the irradiated samples. After irradiation, the sample with higher W content revealed swelling and melting for all discharges, while in the case of CrNbTaVW only blisters were observed. The deuterium retention was higher for CrNbTaVW1.7 when compared with CrNbTaVW for 3 discharges applied.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 50 条
  • [31] Microstructure and mechanical properties of CrFeNiBx eutectic high entropy alloys
    Lei, Haofeng
    Ye, Xicong
    Feng, Jiaxing
    Chen, Junchao
    Diao, Zhongheng
    Fang, Dong
    Li, Bo
    Zhao, Guangwei
    Liu, Renci
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 887
  • [32] Hot deformation mechanisms of dual phase high entropy alloys
    Buzolin, Ricardo Henrique
    Masswohl, Markus
    Ferraz, Franz Miller Branco
    Chrzan, Konrad
    Dudziak, Tomasz
    Poletti, Maria Cecilia
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 878
  • [33] Preliminary assessment of high-entropy alloys for tritium storage
    Zhang, Jian-Wei
    Hu, Ju-Tao
    Li, Peng-Cheng
    Huang, Gang
    Shen, Hua-Hai
    Xiao, Hai-Yan
    Zhou, Xiao-Song
    Zu, Xiao-Tao
    TUNGSTEN, 2021, 3 (02) : 119 - 130
  • [34] High entropy alloys: Substituting for cobalt in cutting edge technology
    Holmstrom, Erik
    Lizarraga, Raquel
    Linder, David
    Salmasi, Armin
    Wang, Wei
    Kaplan, Bartek
    Mao, Huahai
    Larsson, Henrik
    Vitos, Levente
    APPLIED MATERIALS TODAY, 2018, 12 : 322 - 329
  • [35] Microstructures and Mechanical Properties of FeNiCrMnAl High-Entropy Alloys
    Ye, Xicong
    Xu, Weiquan
    Li, Zhe
    Xu, Dong
    Zhang, Wen
    Li, Bo
    Fang, Dong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (10) : 7820 - 7829
  • [36] Nanocrystalline high-entropy alloys
    Koch, Carl C.
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (18) : 3435 - 3444
  • [37] Orientational high-entropy alloys
    Kumar, Nitesh
    Subramaniam, Anandh
    PHILOSOPHICAL MAGAZINE LETTERS, 2014, 94 (12) : 749 - 754
  • [38] Compositional Effects of Additively Manufactured Refractory High-Entropy Alloys under High-Energy Helium Irradiation
    Lang, Eric
    Burns, Kory
    Wang, Yongqiang
    Kotula, Paul G.
    Kustas, Andrew B.
    Rodriguez, Sal
    Aitkaliyeva, Assel
    Hattar, Khalid
    NANOMATERIALS, 2022, 12 (12)
  • [39] Phase stabilities of high entropy alloys
    Luan, Heng-Wei
    Shao, Yang
    Li, Jin-Feng
    Mao, Wen-Lue
    Han, Zhi-Dong
    Shao, Chunlin
    Yao, Ke-Fu
    SCRIPTA MATERIALIA, 2020, 179 : 40 - 44
  • [40] High-entropy alloys in thermoelectric application: A selective review
    Ren, Kai
    Huo, Wenyi
    Chen, Shuai
    Cheng, Yuan
    Wang, Biao
    Zhang, Gang
    CHINESE PHYSICS B, 2024, 33 (05)