New Approaches for Studying Conformal Embeddings and Collapsing Levels for W-Algebras

被引:7
作者
Adamovic, Drazen [1 ]
Frajria, Pierluigi Moeseneder [2 ]
Papi, Paolo [3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] Politecn Milan, Poloreg Como, Via Anzani 42, I-22100 Como, Italy
[3] Sapienza Univ Roma, Dipartimentodi Matemat, Ple A Moro 2, I-00185 Rome, Italy
关键词
REPRESENTATION-THEORY; QUANTUM REDUCTION; AFFINE; TRIALITIES; MODULES; FINITE;
D O I
10.1093/imrn/rnad138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a general result saying that under certain hypothesis an embedding of an affine vertex algebra into an affine W-algebra is conformal if and only if their central charges coincide. This result extends our previous result obtained in the case of minimal affine W-algebras [3]. We also find a sufficient condition showing that certain conformal levels are collapsing. This new condition enables us to find some levels k where W-k(sl(N), x, f) collapses to its affine part when f is of hook or rectangular type. Our methods can be applied to non-admissible levels. In particular, we prove Creutzig's conjecture [18] on the conformal embedding in the hook type W-algebra W-k(sl(n + m), x, f(m,n)) of its affine vertex subalgebra. Quite surprisingly, the problem of showing that certain conformal levels are not collapsing turns out to be very difficult. In the cases when k is admissible and conformal, we prove that W-k(sl(n+m), x, f(m,n)) is not collapsing. Then, by generalizing the results on semi-simplicity of conformal embeddings from [2], [5], we find many cases in which W-k(sl(n + m), x, f(m,n)) is semi-simple as a module for its affine subalgebra at conformal level and we provide explicit decompositions.
引用
收藏
页码:19431 / 19475
页数:45
相关论文
共 38 条
[1]  
Adamovic D., JAPAN J MATH, V12, P261
[2]  
Adamovic D., ARXIV
[3]  
Adamovic D., 2021, CONTEMP MATH, V768, P151
[4]   On the semisimplicity of the category KLk for affine Lie superalgebras [J].
Adamovic, Drazen ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo .
ADVANCES IN MATHEMATICS, 2022, 405
[5]  
Adamovic D, 2024, MATH ANN, V389, P281, DOI 10.1007/s00208-023-02634-6
[6]   On the representation theory of the vertex algebra L-5/2(sl(4)) [J].
Adamovic, Drazen ;
Perse, Ozren ;
Vukorepa, Ivana .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (02)
[7]  
Adamovic D, 2021, COMMUN MATH PHYS, V383, P1207, DOI 10.1007/s00220-021-03950-1
[8]   An Application of Collapsing Levels to the Representation Theory of Affine Vertex Algebras [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (13) :4103-4143
[9]   Conformal embeddings in affine vertex superalgebras [J].
Adamovic, Drazen ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
ADVANCES IN MATHEMATICS, 2020, 360
[10]   On the classification of non-equal rank affine conformal embeddings and applications [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (03) :2455-2498