QTL Mapping and Transcriptome Analysis Reveal Candidate Genes Regulating Seed Color in Brassica napus

被引:3
|
作者
Liu, Fangying [1 ]
Chen, Hao [1 ]
Yang, Liu [1 ]
You, Liang [1 ]
Ju, Jianye [1 ]
Yang, Shujie [1 ]
Wang, Xiaolin [1 ]
Liu, Zhongsong [1 ]
机构
[1] Hunan Agr Univ, Coll Agron, Changsha 410128, Peoples R China
基金
中国国家自然科学基金;
关键词
rapeseed; yellow seed; genetic map; quantitative trait locus; coexpression network; flavonoid; FLAVONOID BIOSYNTHESIS; MAJOR QTL; IDENTIFICATION; COLOCALIZATION; ACCUMULATION; ALIGNMENT; PATHWAYS; JUNCEA;
D O I
10.3390/ijms24119262
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Yellow seeds are desirable in rapeseed breeding because of their higher oil content and better nutritional quality than black seeds. However, the underlying genes and formation mechanism of yellow seeds remain unclear. Here, a novel yellow-seeded rapeseed line (Huangaizao, HAZ) was crossed with a black-seeded rapeseed line (Zhongshuang11, ZS11) to construct a mapping population of 196 F-2 individuals, based on which, a high-density genetic linkage map was constructed. This map, comprising 4174 bin markers, was 1618.33 cM in length and had an average distance of 0.39 cM between its adjacent markers. To assess the seed color of the F-2 population, three methods (imaging, spectrophotometry, and visual scoring) were used and a common major quantitative trait locus (QTL) on chromosome A09, explaining 10.91-21.83% of the phenotypic variance, was detected. Another minor QTL, accounting for 6.19-6.69% of the phenotypic variance, was detected on chromosome C03, only by means of imaging and spectrophotometry. Furthermore, a dynamic analysis of the differential expressions between the parental lines showed that flavonoid biosynthesis-related genes were down-regulated in the yellow seed coats at 25 and 35 days after flowering. A coexpression network between the differentially expressed genes identified 17 candidate genes for the QTL intervals, including a flavonoid structure gene, novel4557 (BnaC03.TT4), and two transcription factor genes, namely, BnaA09G0616800ZS (BnaA09.NFYA8) and BnaC03G0060200ZS (BnaC03.NAC083), that may regulate flavonoid biosynthesis. Our study lays a foundation for further identifying the genes responsible for and understanding the regulatory mechanism of yellow seed formation in Brassica napus.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] QTL Mapping and Diurnal Transcriptome Analysis Identify Candidate Genes Regulating Brassica napus Flowering Time
    Song, Jurong
    Li, Bao
    Cui, Yanke
    Zhuo, Chenjian
    Gu, Yuanguo
    Hu, Kaining
    Wen, Jing
    Yi, Bin
    Shen, Jinxiong
    Ma, Chaozhi
    Fu, Tingdong
    Tu, Jinxing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (14)
  • [2] Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L
    Jian, Hongju
    Zhang, Aoxiang
    Ma, Jinqi
    Wang, Tengyue
    Yang, Bo
    Shuang, Lan Shuan
    Liu, Min
    Li, Jiana
    Xu, Xinfu
    Paterson, Andrew H.
    Liu, Liezhao
    BMC GENOMICS, 2019, 20 (1)
  • [3] Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus
    Zhao, Qing
    Wu, Jian
    Lan, Lei
    Shahid, Muhammad
    Qasim, Muhammad Uzair
    Yu, Kaidi
    Zhang, Chunyu
    Fan, Chuchuan
    Zhou, Yongming
    THEORETICAL AND APPLIED GENETICS, 2023, 136 (12)
  • [4] Identification of candidate genes for leaf size by QTL mapping and transcriptome sequencing in Brassica napus L
    Cheng, Fengjie
    Wang, Yuwen
    Peng, Aoyi
    Li, Shuyu
    Chen, Jun
    Zheng, Xiaoxiao
    Xiong, Jie
    Ding, Ge
    Zhang, Bingchao
    Zhai, Wen
    Song, Laiqiang
    Wei, Wenliang
    Chen, Lunlin
    BMC GENOMICS, 2025, 26 (01):
  • [5] Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus
    Yao, Min
    Guan, Mei
    Yang, Qian
    Huang, Luyao
    Xiong, Xinghua
    Jan, Habib U.
    Voss-Fels, Kai P.
    Werner, Christian R.
    He, Xin
    Qian, Wei
    Snowdon, Rod J.
    Guan, Chunyun
    Hua, Wei
    Qian, Lunwen
    THEORETICAL AND APPLIED GENETICS, 2021, 134 (05) : 1545 - 1555
  • [6] Quantitative trait locus mapping and transcriptome analysis reveal candidate genes for a stem bending mutant in rapeseed (Brassica napus)
    Yu, Mengna
    Zhang, Rui
    Liu, Yajun
    Gu, Yuan
    Shang, Guoxia
    Fan, Yonghai
    Liu, Miao
    Li, Shengting
    Tang, Yuqiao
    Wan, Chuanfang
    Wu, Xuli
    Qu, Cunmin
    Li, Jiana
    Lu, Kun
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 177
  • [7] Fine mapping and candidate gene analysis of the major QTL qSW-A03 for seed weight in Brassica napus
    Meng, Jiangyu
    Hu, Dingxue
    Wang, Bin
    Zhu, Yuelin
    Lu, Chunyan
    Deng, Yan
    Cai, Huiying
    Wang, Baohua
    He, Yajun
    Qian, Wei
    THEORETICAL AND APPLIED GENETICS, 2025, 138 (04)
  • [8] Identification of Candidate Genes Regulating the Seed Coat Color Trait in Sesame (Sesamum indicum L.) Using an Integrated Approach of QTL Mapping and Transcriptome Analysis
    Li, Chun
    Duan, Yinghui
    Miao, Hongmei
    Ju, Ming
    Wei, Libin
    Zhang, Haiyang
    FRONTIERS IN GENETICS, 2021, 12
  • [9] QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum
    Bergmann, Thomas
    Menkhaus, Jan
    Ye, Wanzhi
    Schemmel, Markus
    Hasler, Mario
    Rietz, Steffen
    Leckband, Gunhild
    Cai, Daguang
    THEORETICAL AND APPLIED GENETICS, 2023, 136 (04)
  • [10] Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea)
    Xiao, Zhiliang
    Hu, Yang
    Zhang, Xiaoli
    Xue, Yuqian
    Fang, Zhiyuan
    Yang, Limei
    Zhang, Yangyong
    Liu, Yumei
    Li, Zhansheng
    Liu, Xing
    Liu, Zezhou
    Lv, Honghao
    Zhuang, Mu
    GENES, 2017, 8 (06) : 2 - 17