Deep Stacked Autoencoder-Based Long-Term Spectrum Prediction Using Real-World Data

被引:15
作者
Pan, Guangliang [1 ]
Wu, Qihui [1 ]
Ding, Guoru [2 ]
Wang, Wei [1 ]
Li, Jie [1 ]
Xu, Fuyuan [3 ]
Zhou, Bo [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Key Lab Dynam Cognit Syst Electromagnet Spectrum S, Minist Ind & Informat Technol, Nanjing 211106, Peoples R China
[2] Army Engn Univ, Coll Commun Engn, Nanjing 210007, Peoples R China
[3] Nanjing Elect Equipment Res Inst, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
Predictive models; Feature extraction; Hidden Markov models; Time-frequency analysis; Frequency measurement; Autoregressive processes; Data models; Spectrum prediction; temporal-spectral-spatial correlations; deep learning; stacked autoencoder; NEURAL-NETWORKS;
D O I
10.1109/TCCN.2023.3254524
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Spectrum prediction is challenging due to its multi-dimension, complex inherent dependency, and heterogeneity among the spectrum data. In this paper, we first propose a stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM) based spectrum prediction method (SAEL-SP). Specifically, a SAE is designed to extract the hidden features (semantic coding) of spectrum data in an unsupervised manner. Then, the output of SAE is connected to a predictor (Bi-LSTM), which is used for long-term prediction by learning hidden features. The main advantage of SAEL-SP is that the underlying features of spectrum data can be retained automatically, layer by layer, rather than designing them manually. To further improve the prediction accuracy of SAEL-SP and achieve a wider bandwidth prediction, we propose a SAE-based spectrum prediction method using temporal-spectral-spatial features of data (SAE-TSS). Different from SAEL-SP, the input of SAE-TSS is the image format. SAE-TSS achieves higher prediction accuracy than SAEL-SP using the features extracted from time, frequency, and space dimensions. We use a real-world spectrum dataset to validate the effectiveness of two prediction frameworks. Experiment results show that both SAEL-SP and SAE-TSS outperform existing spectrum prediction approaches.
引用
收藏
页码:534 / 548
页数:15
相关论文
共 41 条
  • [41] Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks
    Zhao, Rui
    Wang, Dongzhe
    Yan, Ruqiang
    Mao, Kezhi
    Shen, Fei
    Wang, Jinjiang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (02) : 1539 - 1548