A learning- and scenario-based MPC design for nonlinear systems in LPV framework with safety and stability guarantees

被引:5
作者
Bao, Yajie [1 ]
Abbas, Hossam S. [2 ]
Velni, Javad Mohammadpour [3 ]
机构
[1] Univ Georgia, Sch Elect & Comp Engn, Athens, GA 30602 USA
[2] Univ Lubeck, Inst Elect Engn Med, Lubeck, Germany
[3] Clemson Univ, Dept Mech Engn, Clemson, SC USA
基金
美国国家科学基金会;
关键词
Safe scenario-based model predictive control; learning-based control design; linear parameter-varying framework; Bayesian neural networks; MODEL-PREDICTIVE CONTROL; STATE; IDENTIFICATION; GENERATION;
D O I
10.1080/00207179.2023.2212814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a learning- and scenario-based model predictive control (MPC) design approach for systems modelled in the linear parameter-varying (LPV) framework. Using input-output data collected from the system, a state-space LPV model with uncertainty quantification is first learned through the variational Bayesian inference Neural Network (BNN) approach. The learned probabilistic model is assumed to contain the true dynamics of the system with a high probability and is used to generate scenarios that ensure safety for a scenario-based MPC. Moreover, to guarantee stability and enhance the performance of the closed-loop system, a parameter-dependent terminal cost and controller, as well as a terminal robust positive invariant set are designed. Numerical examples will be used to demonstrate that the proposed control design approach can ensure safety and achieve desired control performance.
引用
收藏
页码:1512 / 1531
页数:20
相关论文
共 46 条
  • [1] LPV modeling of nonlinear systems: A multi-path feedback linearization approach
    Abbas, Hossam S.
    Toth, Roland
    Petreczky, Mihaly
    Meskin, Nader
    Mohammadpour Velni, Javad
    Koelewijn, Patrick J. W.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 9436 - 9465
  • [2] Provably safe and robust learning-based model predictive control
    Aswani, Anil
    Gonzalez, Humberto
    Sastry, S. Shankar
    Tomlin, Claire
    [J]. AUTOMATICA, 2013, 49 (05) : 1216 - 1226
  • [3] Bao Y., 2020, DYN SYST CONTR C, V84270
  • [4] Learning-based adaptive-scenario-tree model predictive control with improved probabilistic safety using robust Bayesian neural networks
    Bao, Yajie
    Chan, Kimberly J.
    Mesbah, Ali
    Velni, Javad Mohammadpour
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (05) : 3312 - 3333
  • [5] Bao YJ, 2022, P AMER CONTR CONF, P3260, DOI 10.23919/ACC53348.2022.9867798
  • [6] Safe control of nonlinear systems in LPV framework using model-based reinforcement learning
    Bao, Yajie
    Velni, Javad Mohammadpour
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (04) : 1078 - 1089
  • [7] Identification of State-space Linear Parameter-varying Models Using Artificial Neural Networks
    Bao, Yajie
    Velni, Javad Mohammadpour
    Basina, Aditya
    Shahbakhti, Mahdi
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 5286 - 5291
  • [8] Epistemic Uncertainty Quantification in State-Space LPV Model Identification Using Bayesian Neural Networks
    Bao, Yajie
    Velni, Javad Mohammadpour
    Shahbakhti, Mahdi
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 719 - 724
  • [9] Variational Inference: A Review for Statisticians
    Blei, David M.
    Kucukelbir, Alp
    McAuliffe, Jon D.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 859 - 877
  • [10] Blundell C, 2015, PR MACH LEARN RES, V37, P1613