Positive Solutions with High Energy for Fractional Schrodinger Equations

被引:1
作者
Guo, Qing [1 ]
Zhao, Leiga [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
关键词
fractional Schrodinger equations; positive solution; concentration compactness principle; GROUND-STATES; UNIQUENESS; COMPACTNESS; LAPLACIAN; EXISTENCE;
D O I
10.1007/s10473-023-0308-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Schrodinger equations (-Delta)(s) (u) + V (x)u = a(x)|u|(p)-(2) (u) + b(x)|u|(q) (2) u, x is an element of R-N, where 0 < s < 1, 2 < q < p < 2*(s), 2*(s) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions
引用
收藏
页码:1116 / 1130
页数:15
相关论文
共 40 条
[1]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[2]  
Ambrosio V, 2018, ADV DIFFERENTIAL EQU, V23, P455
[3]   Nonlinear fractional magnetic Schrodinger equation: Existence and multiplicity [J].
Ambrosio, Vincenzo ;
d'Avenia, Pietro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (05) :3336-3368
[4]   UNIQUENESS AND RELATED ANALYTIC PROPERTIES FOR THE BENJAMIN-ONO-EQUATION - A NONLINEAR NEUMANN PROBLEM IN THE PLANE [J].
AMICK, CJ ;
TOLAND, JF .
ACTA MATHEMATICA, 1991, 167 (1-2) :107-126
[5]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[6]   POSITIVE SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :283-300
[7]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   POSITIVE SOLUTION AND BIFURCATION FROM THE ESSENTIAL SPECTRUM OF A SEMILINEAR ELLIPTIC EQUATION ON RN [J].
CAO, DM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (11) :1045-1052
[10]   The effect of concentrating potentials in some singularly perturbed problems [J].
Cerami, G ;
Passaseo, D .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (03) :257-281