Statistical Texture Learning Method for Monitoring Abandoned Suburban Cropland Based on High-Resolution Remote Sensing and Deep Learning

被引:11
作者
Shen, Qianhui [1 ]
Deng, Haojun [1 ]
Wen, Xinjian [2 ,3 ,4 ]
Chen, Zhanpeng [2 ,3 ,4 ]
Xu, Hongfei [2 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Peoples R China
[2] Surveying & Mapping Inst Lands & Resource, Dept Guangdong Prov, Guangzhou 510663, Peoples R China
[3] Minist Nat Resources, Key Lab Nat Resources Monitoring Trop & Subtrop Ar, Guangzhou 510663, Peoples R China
[4] Guangdong Sci & Technol Collaborat Innovat Ctr Nat, Guangzhou 510663, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Semantic segmentation; Task analysis; Semantics; Convolution; Spatial resolution; Cropland abandonment; deep learning (DL); remote sensing; statistical learning; very high resolution (VHR); TEMPORAL SEGMENTATION; AGRICULTURAL LAND; NETWORK; FOREST; CHINA;
D O I
10.1109/JSTARS.2023.3255541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cropland abandonment is crucial in agricultural management and has a profound impact on crop yield and food security. In recent years, many cropland abandonment identification methods based on remote sensing observation data have been proposed, but most of these methods are based on coarse-resolution images and use traditional machine learning methods for simple identification. To this end, we perform abandonment recognition on high-resolution remote sensing images. According to the texture features of the abandoned land, we combine the method of statistical texture learning and propose a new deep learning framework called pyramid scene parsing network-statistical texture learning (PSPNet-STL). The model integrates high-level semantic feature extraction and deep mining of low-level texture features to identify cropland abandonment. First, we labeled the abandoned cropland area and built the high-resolution abandoned cropland (HRAC) dataset, a high-resolution cropland abandonment dataset. Second, we improved PSPNet by fusing statistical texture learning modules to learn multiple texture information on low-level feature maps and combined high-level semantic features for cropland abandonment recognition. Experiments are performed on the HRAC dataset. Compared with other methods, the proposed model has the best performance on this dataset, both in terms of accuracy and visualization, proving that deep mining of low-level statistical texture features is beneficial for crop abandonment recognition.
引用
收藏
页码:3060 / 3069
页数:10
相关论文
共 50 条
  • [31] Self-Supervised Edge Perceptual Learning Framework for High-Resolution Remote Sensing Images Classification
    Li, Guangfei
    Liu, Wenbing
    Gao, Quanxue
    Wang, Qianqian
    Han, Jungong
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6024 - 6038
  • [32] Large-scale automatic extraction of agricultural greenhouses based on high-resolution remote sensing and deep learning technologies
    Chen, Wei
    Li, Jiajia
    Wang, Dongliang
    Xu, Yameng
    Liao, Xiaohan
    Wang, Qingpeng
    Chen, Zhenting
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (48) : 106671 - 106686
  • [33] Large-scale automatic extraction of agricultural greenhouses based on high-resolution remote sensing and deep learning technologies
    Wei Chen
    Jiajia Li
    Dongliang Wang
    Yameng Xu
    Xiaohan Liao
    Qingpeng Wang
    Zhenting Chen
    Environmental Science and Pollution Research, 2023, 30 : 106671 - 106686
  • [34] MF-Dfnet: a deep learning method for pixel-wise classification of very high-resolution remote sensing images
    Zhang, Shichao
    Wang, Changying
    Li, Jinhua
    Sui, Yi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (01) : 330 - 348
  • [35] Fine crop classification in high resolution remote sensing based on deep learning
    Lu, Tingyu
    Wan, Luhe
    Wang, Lei
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [36] Insulator Detection for High-Resolution Satellite Images Based on Deep Learning
    Zhou, Fangrong
    Jin, Weishi
    Zheng, Zezhong
    Mou, Fan
    Li, Zhongnian
    Ma, Yutang
    Wei, Bu
    Huang, Shuangde
    Wang, Qun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [37] Relational Part-Aware Learning for Complex Composite Object Detection in High-Resolution Remote Sensing Images
    Yuan, Shuai
    Zhang, Lixian
    Dong, Runmin
    Xiong, Jie
    Zheng, Juepeng
    Fu, Haohuan
    Gong, Peng
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (10) : 6118 - 6131
  • [38] Cropland Extraction in Southern China from Very High-Resolution Images Based on Deep Learning
    Xie, Dehua
    Xu, Han
    Xiong, Xiliu
    Liu, Min
    Hu, Haoran
    Xiong, Mengsen
    Liu, Luo
    REMOTE SENSING, 2023, 15 (09)
  • [39] Remote Sensing Image Registration Based on Deep Learning Regression Model
    Li, Liangzhi
    Han, Ling
    Ding, Mingtao
    Liu, Zhiheng
    Cao, Hongye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] Remote Sensing Image Super-Resolution using Deep Learning
    Rajeshwari, P.
    Priya, Pamujula Lakshmi
    Pooja, M.
    Abhishek, G.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 665 - 668