Statistical Texture Learning Method for Monitoring Abandoned Suburban Cropland Based on High-Resolution Remote Sensing and Deep Learning

被引:11
作者
Shen, Qianhui [1 ]
Deng, Haojun [1 ]
Wen, Xinjian [2 ,3 ,4 ]
Chen, Zhanpeng [2 ,3 ,4 ]
Xu, Hongfei [2 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Peoples R China
[2] Surveying & Mapping Inst Lands & Resource, Dept Guangdong Prov, Guangzhou 510663, Peoples R China
[3] Minist Nat Resources, Key Lab Nat Resources Monitoring Trop & Subtrop Ar, Guangzhou 510663, Peoples R China
[4] Guangdong Sci & Technol Collaborat Innovat Ctr Nat, Guangzhou 510663, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Semantic segmentation; Task analysis; Semantics; Convolution; Spatial resolution; Cropland abandonment; deep learning (DL); remote sensing; statistical learning; very high resolution (VHR); TEMPORAL SEGMENTATION; AGRICULTURAL LAND; NETWORK; FOREST; CHINA;
D O I
10.1109/JSTARS.2023.3255541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cropland abandonment is crucial in agricultural management and has a profound impact on crop yield and food security. In recent years, many cropland abandonment identification methods based on remote sensing observation data have been proposed, but most of these methods are based on coarse-resolution images and use traditional machine learning methods for simple identification. To this end, we perform abandonment recognition on high-resolution remote sensing images. According to the texture features of the abandoned land, we combine the method of statistical texture learning and propose a new deep learning framework called pyramid scene parsing network-statistical texture learning (PSPNet-STL). The model integrates high-level semantic feature extraction and deep mining of low-level texture features to identify cropland abandonment. First, we labeled the abandoned cropland area and built the high-resolution abandoned cropland (HRAC) dataset, a high-resolution cropland abandonment dataset. Second, we improved PSPNet by fusing statistical texture learning modules to learn multiple texture information on low-level feature maps and combined high-level semantic features for cropland abandonment recognition. Experiments are performed on the HRAC dataset. Compared with other methods, the proposed model has the best performance on this dataset, both in terms of accuracy and visualization, proving that deep mining of low-level statistical texture features is beneficial for crop abandonment recognition.
引用
收藏
页码:3060 / 3069
页数:10
相关论文
共 50 条
  • [21] Masked Feature Modeling for Generative Self-Supervised Representation Learning of High-Resolution Remote Sensing Images
    Pang, Shiyan
    Hu, Hanchun
    Zuo, Zhiqi
    Chen, Jia
    Hu, Xiangyun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 8434 - 8449
  • [22] Contrastive Scene Change Representation Learning for High-Resolution Remote Sensing Scene Change Detection
    Wang, Jue
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [23] Recognition and extraction of high-resolution satellite remote sensing image buildings based on deep learning
    Zeng, Yifu
    Guo, Yi
    Li, Jiayi
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04) : 2691 - 2706
  • [24] A Novel Change Detection Method Based on Visual Language From High-Resolution Remote Sensing Images
    Qiu, Junlong
    Liu, Wei
    Zhang, Hui
    Li, Erzhu
    Zhang, Lianpeng
    Li, Xing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 4554 - 4567
  • [25] Fine Object Change Detection Based on Vector Boundary and Deep Learning With High-Resolution Remote Sensing Images
    Shi, Jiacheng
    Liu, Wei
    Zhu, Yihu
    Wang, Shengli
    Hao, Sibao
    Zhu, Changming
    Shan, Haoyu
    Li, Erzhu
    Li, Xing
    Zhang, Lianpeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4094 - 4103
  • [26] A Deep Learning Model With Capsules Embedded for High-Resolution Image Classification
    Guo, Yujuan
    Liao, Jingjuan
    Shen, Guozhuang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 214 - 223
  • [27] High-resolution optical remote sensing imagery change detection through deep transfer learning
    Larabi, Mohammed El Amin
    Chaib, Souleyman
    Bakhti, Khadidja
    Hasni, Kamel
    Bouhlala, Mohammed Amine
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [28] Deep High-Resolution Representation Learning for Visual Recognition
    Wang, Jingdong
    Sun, Ke
    Cheng, Tianheng
    Jiang, Borui
    Deng, Chaorui
    Zhao, Yang
    Liu, Dong
    Mu, Yadong
    Tan, Mingkui
    Wang, Xinggang
    Liu, Wenyu
    Xiao, Bin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3349 - 3364
  • [29] A Dehazing Method for Remote Sensing Image Under Nonuniform Hazy Weather Based on Deep Learning Network
    Jiang, Bo
    Wang, Jinshuai
    Wu, Yuwei
    Wang, Shuaibo
    Zhang, Jinyue
    Chen, Xiaoxuan
    Li, Yaowei
    Li, Xiaoyang
    Wang, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [30] Federated Deep Learning With Prototype Matching for Object Extraction From Very-High-Resolution Remote Sensing Images
    Zhang, Xiaokang
    Zhang, Boning
    Yu, Weikang
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61