The mod k chromatic index of random graphs

被引:0
作者
Botler, Fabio [1 ]
Colucci, Lucas [2 ]
Kohayakawa, Yoshiharu [2 ]
机构
[1] Univ Fed Rio De Janeiro, Programa Engn Sistemas & Computacao, COPPE, Rio De Janeiro, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
关键词
chromatic index; decomposition; edge coloring; mod;
D O I
10.1002/jgt.22946
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The mod k chromatic index of a graph G is the minimum number of colors needed to color the edges of G in a way that the subgraph spanned by the edges of each color has all degrees congruent to 1 (mod k). Recently, the authors proved that the mod k chromatic index of every graph is at most 198k - 101, improving, for large k, a result of Scott. Here we study the mod k chromatic index of random graphs. We prove that for every integer k >= 2, there is C-k > 0 such that if p >= C-k n(-1) log n and n (1 - p) -> infinity as n -> infinity, then the following holds: if k is odd, then the mod k chromatic index of G (n, p) is asymptotically almost surely (a.a.s.) equal to k, while if k is even, then the mod k chromatic index of G(2n, p) (respectively, G(2n + 1, p)) is a.a.s. equal to k (respectively, k + 1).
引用
收藏
页码:767 / 779
页数:13
相关论文
共 9 条
  • [1] Alon N., 2016, Wiley Series in Discrete Mathematics and Optimization, V4th
  • [2] Botler F., 2021, EXTENDED ABSTRACTS E, P726
  • [3] Botler F., 2020, ANAIS ENCONTRO TEORI, P49
  • [4] The mod k chromatic index of graphs is O(k)
    Botler, Fabio
    Colucci, Lucas
    Kohayakawa, Yoshiharu
    [J]. JOURNAL OF GRAPH THEORY, 2023, 102 (01) : 197 - 200
  • [5] Hasanvand M, 2022, ARXIV
  • [6] Haxell P. E., 1995, Comb. Prob. Comput, V4, P217
  • [7] Janson S., 2000, WIL INT S D, DOI 10.1002/9781118032718
  • [8] PYBER L, 1992, COLLOQ MATH, V60, P583
  • [9] On graph decompositions module k
    Scott, AD
    [J]. DISCRETE MATHEMATICS, 1997, 175 (1-3) : 289 - 291