Pharmacology-based molecular docking of 4-methylcatechol and its role in RANKL-mediated ROS/Keap1/Nrf2 signalling axis and osteoclastogenesis

被引:23
作者
Xu, Yang [1 ,2 ]
Song, Dezhi [1 ,2 ,3 ]
Su, Yuangang [1 ,2 ]
Chen, Junchun [1 ,2 ]
Wu, Liwei [1 ,3 ]
Lian, Haoyu [1 ,2 ]
Hai, Na [1 ,2 ]
li, Jing [1 ,3 ]
Jiang, Jie [1 ,2 ]
Zhao, Jinmin [1 ,2 ]
Xu, Jiake [1 ,4 ]
Liu, Qian [1 ,3 ]
机构
[1] Guangxi Med Univ, Affiliated Hosp 1, Res Ctr Regenerat Med, Orthopaed Dept, 22 Shuangyong Rd, Nanning 530021, Guangxi, Peoples R China
[2] Guangxi Med Univ, Guangxi Key Lab Regenerat Med, Nanning 530021, Guangxi, Peoples R China
[3] Guangxi Med Univ, Collaborat Innovat Ctr Regenerat Med & Med BioReso, Nanning 530021, Guangxi, Peoples R China
[4] Univ Western Australia, Sch Biomed Sci, Perth 6009, Australia
基金
中国国家自然科学基金;
关键词
4-Methylcatechol; Nrf2; Keap1; Osteoclast; INDUCED BONE LOSS; OXIDATIVE STRESS; SYSTEM; CELLS;
D O I
10.1016/j.biopha.2022.114101
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
4-Methylcatechol (4-MC) is an agonist of various neurotrophic factors, which can upregulate the expression of Heme oxygenase 1 (HO-1) protein by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby inhibiting oxidative stress-induced neural stem cell death. During RANKL-stimulated osteoclast differentiation, intracellular reactive oxygen species (ROS) levels were increased. Nonetheless, the effect of 4-MC on osteoclast formation and bone resorption function has not been researched. In this study, we investigated the effect of HO-1 upregulation by 4-MC on RANKL-induced osteoclastogenesis and explored the molecular mechanism of HO-1 upregulation by 4-MC. We found that the small molecule compound 4-MC could bind to Keap1 amino acid residue of glycine GLY 367, isoleucine ILE 559 and valine VAL 606, with a predicted binding energy of-4.99 kcal/mol. 4-MC was found to inhibit osteoclast differentiation in vitro by activating Nrf2 to scavenge ROS, inhibiting NF-kappa B phosphorylation, and alleviating osteoporosis in ovariectomized (OVX) mice. Taken together, 4 -MC reduces ROS by inhibiting Keap1, thereby preventing OVX-induced bone loss.
引用
收藏
页数:12
相关论文
共 52 条
  • [1] Update on Osteoporosis Screening and Management
    Anam, Anika K.
    Insogna, Karl
    [J]. MEDICAL CLINICS OF NORTH AMERICA, 2021, 105 (06) : 1117 - 1134
  • [2] Aspray Terry J, 2019, Subcell Biochem, V91, P453, DOI 10.1007/978-981-13-3681-2_16
  • [3] Nrf2-Keap1 signaling in oxidative and reductive stress
    Bellezza, Ilaria
    Giambanco, Ileana
    Minelli, Alba
    Donato, Rosario
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2018, 1865 (05): : 721 - 733
  • [4] Aging and Bone
    Boskey, A. L.
    Coleman, R.
    [J]. JOURNAL OF DENTAL RESEARCH, 2010, 89 (12) : 1333 - 1348
  • [5] Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases
    Callaway, Danielle A.
    Jiang, Jean X.
    [J]. JOURNAL OF BONE AND MINERAL METABOLISM, 2015, 33 (04) : 359 - 370
  • [6] Transcription Factor KLF7 Promotes Osteoclast Differentiation by Suppressing HO-1
    Chen, Changhong
    Hu, Fei
    Miao, Shichang
    Sun, Liping
    Jiao, Yajun
    Xu, Mingwei
    Huang, Xin
    Yang, Ying
    Zhou, Rongkui
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [7] Pseurotin A Inhibits Osteoclastogenesis and Prevents Ovariectomized-Induced Bone Loss by Suppressing Reactive Oxygen Species
    Chen, Kai
    Qiu, Pengcheng
    Yuan, Yu
    Zheng, Lin
    He, Jianbo
    Wang, Chao
    Guo, Qiang
    Kenny, Jacob
    Liu, Qian
    Zhao, Jinmin
    Chen, Junhao
    Tickner, Jennifer
    Fan, Shunwu
    Lin, Xianfeng
    Xu, Jiake
    [J]. THERANOSTICS, 2019, 9 (06): : 1634 - 1650
  • [8] Osteoblast-osteoclast interactions
    Chen, Xiao
    Wang, Zhongqiu
    Duan, Na
    Zhu, Guoying
    Schwarz, Edward M.
    Xie, Chao
    [J]. CONNECTIVE TISSUE RESEARCH, 2018, 59 (02) : 99 - 107
  • [9] Disorders of Bone Remodeling
    Feng, Xu
    McDonald, Jay M.
    [J]. ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 6, 2011, 6 : 121 - 145
  • [10] Age Related Osteoporosis: Targeting Cellular Senescence
    Foeger-Samwald, Ursula
    Kerschan-Schindl, Katharina
    Butylina, Maria
    Pietschmann, Peter
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (05)