Stability and Robustness Analysis of Finite-Time Consensus Algorithm for Second-Order Multiagent Systems Under Sampled-Data Control

被引:6
作者
Chen, Weile [1 ]
Du, Haibo [1 ]
Chen, Chih-Chiang [2 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Anhui, Peoples R China
[2] Natl Cheng Kung Univ, Dept Syst & Naval Mechatron Engn, Tainan 70101, Taiwan
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2023年 / 53卷 / 03期
基金
中国国家自然科学基金;
关键词
Consensus algorithm; Stability analysis; Robustness; Asymptotic stability; Lyapunov methods; Eigenvalues and eigenfunctions; Convergence; Consensus; nonsmooth control; robustness; sampled-data control; ADAPTIVE FUZZY CONTROL; MANIPULATORS; STABILIZATION; FLOCKING;
D O I
10.1109/TSMC.2022.3199452
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The consensus problem for second-order multiagent systems based on nonsmooth sampled-data control is considered. First, a continuous-time nonsmooth consensus protocol is proposed, which can realize the consensus of systems in a finite time when the external disturbance is absent. Next, based on the sampled data and the zero-order holder, a new discrete-time nonsmooth protocol is proposed. Considering external disturbances, the explicit relationship between the ultimate boundary of errors of any two agents and the sampling period and external disturbance is given with the Lyapunov method and graph theory, which theoretically shows that the nonsmooth control algorithm has a stronger ability to resist external disturbance than the smooth control algorithm. Finally, a simulation example shows the superiority of the nonsmooth consensus algorithm over a smooth consensus algorithm.
引用
收藏
页码:1445 / 1452
页数:8
相关论文
共 46 条
  • [1] Robust finite-time output feedback stabilisation of the double integrator
    Bernuau, Emmanuel
    Perruquetti, Wilfrid
    Efimov, Denis
    Moulay, Emmanuel
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (03) : 451 - 460
  • [2] Finite-time stability of continuous autonomous systems
    Bhat, SP
    Bernstein, DS
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) : 751 - 766
  • [3] Geometric homogeneity with applications to finite-time stability
    Bhat, SP
    Bernstein, DS
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) : 101 - 127
  • [4] Distributed algorithms for reaching consensus on general functions
    Cortes, Jorge
    [J]. AUTOMATICA, 2008, 44 (03) : 726 - 737
  • [5] Robustness Analysis of a Continuous Higher Order Finite-Time Control System Under Sampled-Data Control
    Du, Haibo
    Zhai, Junyong
    Chen, Michael Z. Q.
    Zhu, Wenwu
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (06) : 2488 - 2494
  • [6] Attitude Synchronization for Flexible Spacecraft With Communication Delays
    Du, Haibo
    Li, Shihua
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) : 3625 - 3630
  • [7] Chattering-free discrete-time sliding mode control
    Du, Haibo
    Yu, Xinghuo
    Chen, Michael Z. Q.
    Li, Shihua
    [J]. AUTOMATICA, 2016, 68 : 87 - 91
  • [8] Du HB, 2015, CHIN CONTR CONF, P7178, DOI 10.1109/ChiCC.2015.7260775
  • [9] Dynamical Behaviors of Discretized Second-Order Terminal Sliding-Mode Control Systems
    Galias, Zbigniew
    Yu, Xinghuo
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (09) : 597 - 601
  • [10] Hardy G., 1967, INEQUALITIES