Interaction solutions of (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation via bilinear method

被引:2
|
作者
Bai, Shuting [1 ]
Yin, Xiaojun [1 ]
Cao, Na [1 ]
Xu, Liyang [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Sci, Hohhot 010018, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2024年 / 38卷 / 32期
基金
中国国家自然科学基金;
关键词
Bilinear neural network method; exact solution; interaction solution; Korteweg-de Vries-Sawada-Kotera-Ramani equation; KADOMTSEV-PETVIASHVILI EQUATION; SOLITON-SOLUTIONS; WAVE SOLUTIONS; SCHRODINGER-EQUATION; STRIPE SOLITONS; LUMP SOLUTIONS; ROGUE WAVE; BREATHER;
D O I
10.1142/S0217984924503202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function's versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation
    Jingyi Chu
    Xin Chen
    Yaqing Liu
    Nonlinear Dynamics, 2024, 112 : 619 - 634
  • [42] New variable separation solutions and nonlinear phenomena for the (2+1)-dimensional modified Korteweg-de Vries equation
    Liang, Yueqian
    Wei, Guangmei
    Li, Xiaonan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 603 - 609
  • [43] Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation
    Chu, Jingyi
    Chen, Xin
    Liu, Yaqing
    NONLINEAR DYNAMICS, 2024, 112 (01) : 619 - 634
  • [44] A Series of Variable Separation Solutions and New Soliton Structures of (2+1)-Dimensional Korteweg-de Vries Equation
    XU Chang-Zhi Department of Physics
    CommunicationsinTheoreticalPhysics, 2006, 46 (09) : 403 - 406
  • [45] A series of variable separation solutions and new soliton structures of (2+1)-dimensional Korteweg-de Vries equation
    Xu Chang-Zhi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (03) : 403 - 406
  • [46] Symmetry reduction, exact solutions, and conservation laws of (2+1)-dimensional Burgers Korteweg-de Vries equation
    Dong Zhong-Zhou
    Liu Xi-Qiang
    Bai Cheng-Lin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (01) : 15 - 20
  • [47] General lump solutions, lumpoff solutions, and rogue wave solutions with predictability for the (2+1)-dimensional Korteweg-de Vries equation
    Wang, Hui
    Tian, Shou-Fu
    Zhang, Tian-Tian
    Chen, Yi
    Fang, Yong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [48] General lump solutions, lumpoff solutions, and rogue wave solutions with predictability for the (2+1)-dimensional Korteweg-de Vries equation
    Hui Wang
    Shou-Fu Tian
    Tian-Tian Zhang
    Yi Chen
    Yong Fang
    Computational and Applied Mathematics, 2019, 38
  • [49] Lump and Interaction solutions of a geophysical Korteweg-de Vries equation
    Rizvi, S. T. R.
    Seadawy, Aly R.
    Ashraf, F.
    Younis, M.
    Iqbal, H.
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 19
  • [50] A direct bilinear Backlund transformation of a (2+1)-dimensional Korteweg-de Vries-like model
    Lue, Xing
    Ma, Wen-Xiu
    Khalique, Chaudry Masood
    APPLIED MATHEMATICS LETTERS, 2015, 50 : 37 - 42