Interaction solutions of (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation via bilinear method

被引:2
|
作者
Bai, Shuting [1 ]
Yin, Xiaojun [1 ]
Cao, Na [1 ]
Xu, Liyang [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Sci, Hohhot 010018, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2024年 / 38卷 / 32期
基金
中国国家自然科学基金;
关键词
Bilinear neural network method; exact solution; interaction solution; Korteweg-de Vries-Sawada-Kotera-Ramani equation; KADOMTSEV-PETVIASHVILI EQUATION; SOLITON-SOLUTIONS; WAVE SOLUTIONS; SCHRODINGER-EQUATION; STRIPE SOLITONS; LUMP SOLUTIONS; ROGUE WAVE; BREATHER;
D O I
10.1142/S0217984924503202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function's versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Different Wave Structures for the (2+1)-Dimensional Korteweg-de Vries Equation
    Qin, Chun-Rong
    Liu, Jian-Guo
    Zhu, Wen-Hui
    Ai, Guo-Ping
    Uddin, M. Hafiz
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [22] Backlund transformation, residual symmetry and exact interaction solutions of an extended (2+1)-dimensional Korteweg-de Vries equation
    Wu, Huiling
    Chen, Qiaoyun
    Song, Junfeng
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [23] On some invariant solutions of (2+1)-dimensional Korteweg-de Vries equations
    Kumar, Mukesh
    Tanwar, Dig Vijay
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (11-12) : 2535 - 2548
  • [24] Lump Solutions and Interaction Phenomenon for (2+1)-Dimensional Sawada-Kotera Equation
    Huang, Li-Li
    Chen, Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 67 (05) : 473 - 478
  • [25] New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg-de Vries equation
    Li, Ye-Zhou
    Liu, Jian-Guo
    NONLINEAR DYNAMICS, 2018, 91 (01) : 497 - 504
  • [26] The Schwarzian Korteweg-de!Vries equation in (2+1) dimensions
    Ramírez, J
    Bruzón, MS
    Muriel, C
    Gandarias, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (05): : 1467 - 1484
  • [27] Analytic investigation of the (2+1)-dimensional Schwarzian Korteweg-de Vries equation for traveling wave solutions
    Aslan, Ismail
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 6013 - 6017
  • [28] New coherent structures and interaction behavior for the new (2+1)-dimensional Korteweg-de Vries equation
    Li, Zitian
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [29] Nonautonomous characteristics of lump solutions for a (2+1)-dimensional Korteweg-de Vries equation with variable coefficients
    Chen, Fei-Peng
    Chen, Wei-Qin
    Wang, Lei
    Ye, Zhen-Jun
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 33 - 39
  • [30] (2+1)-DIMENSIONAL GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATIONS
    Alexeyeva, A. V.
    BULLETIN OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, 2012, (05): : 19 - 24