Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology

被引:5
作者
Chen, Ronghui [1 ,2 ]
Wu, Jun [2 ]
Che, Yinwei [3 ]
Jiao, Yuzhuo [3 ]
Sun, Huashan [3 ]
Zhao, Yinuo [4 ]
Chen, Pingping [4 ]
Meng, Lingxin [2 ]
Zhao, Tao [3 ]
机构
[1] Shandong Second Med Univ, Sch Clin Med, Weifang 261053, Peoples R China
[2] Peoples Hosp Rizhao, Dept Oncol, Rizhao 276826, Peoples R China
[3] Peoples Hosp Rizhao, Dept Cent Lab, Shandong Prov Key Med & Hlth Lab, Rizhao Key Lab Basic Res Anesthesia & Resp Intens, Rizhao 276826, Shandong, Peoples R China
[4] Peoples Hosp Rizhao, Dept Pathol, Rizhao 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
Clear cell renal cell carcinoma; Prognostic risk model; Machine learning algorithm; Cuproptosis; Disulfidptosis; Long non-coding RNA; Targeted drugs; Immune inhibitors; SUNITINIB; SURVIVAL;
D O I
10.1186/s40001-024-01763-1
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.
引用
收藏
页数:17
相关论文
共 94 条
[51]   Cuproptosis-Related LncRNA-Based Prediction of the Prognosis and Immunotherapy Response in Papillary Renal Cell Carcinoma [J].
Pang, Yipeng ;
Wang, Yushi ;
Zhou, Xinyu ;
Ni, Zhu ;
Chen, Wenjing ;
Liu, Yi ;
Du, Wenlong .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
[52]   Identification of disulfidptosis-related subtypes and development of a prognosis model based on stacking framework in renal clear cell carcinoma [J].
Peng, Kun ;
Wang, Ning ;
Liu, Qingyuan ;
Wang, Lingdian ;
Duan, Xiaoyu ;
Xie, Guochong ;
Li, Jixi ;
Ding, Degang .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (15) :13793-13810
[53]   Complementing the Cancer-Immunity Cycle [J].
Pio, Ruben ;
Ajona, Daniel ;
Ortiz-Espinosa, Sergio ;
Mantovani, Alberto ;
Lambris, John D. .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[54]   Establishment of Best Practices for Evidence for Prediction A Review [J].
Poldrack, Russell A. ;
Huckins, Grace ;
Varoquaux, Gael .
JAMA PSYCHIATRY, 2020, 77 (05) :534-540
[55]   Machine Learning in Medicine [J].
Rajkomar, Alvin ;
Dean, Jeffrey ;
Kohane, Isaac .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (14) :1347-1358
[56]   Identification of low-dose multidrug combinations for sunitinib-naive and pre-treated renal cell carcinoma [J].
Rausch, Magdalena ;
Weiss, Andrea ;
Achkhanian, Joanna ;
Rotari, Andrei ;
Nowak-Sliwinska, Patrycja .
BRITISH JOURNAL OF CANCER, 2020, 123 (04) :556-567
[57]   The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma [J].
Ricketts, Christopher J. ;
de Cubas, Aguirre A. ;
Fan, Huihui ;
Smith, Christof C. ;
Lang, Martin ;
Reznik, Ed ;
Bowlby, Reanne ;
Gibb, Ewan A. ;
Akbani, Rehan ;
Beroukhim, Rameen ;
Bottaro, Donald P. ;
Choueiri, Toni K. ;
Gibbs, Richard A. ;
Godwin, Andrew K. ;
Haake, Scott ;
Hakimi, A. Ari ;
Henske, Elizabeth P. ;
Hsieh, James J. ;
Ho, Thai H. ;
Kanchi, Rupa S. ;
Krishnan, Bhavani ;
Kwaitkowski, David J. ;
Lui, Wembin ;
Merino, Maria J. ;
Mills, Gordon B. ;
Myers, Jerome ;
Nickerson, Michael L. ;
Reuter, Victor E. ;
Schmidt, Laura S. ;
Shelley, C. Simon ;
Shen, Hui ;
Shuch, Brian ;
Signoretti, Sabina ;
Srinivasan, Ramaprasad ;
Tamboli, Pheroze ;
Thomas, George ;
Vincent, Benjamin G. ;
Vocke, Cathy D. ;
Wheeler, David A. ;
Yang, Lixing ;
Kim, William T. ;
Robertson, A. Gordon ;
Spellman, Paul T. ;
Rathmell, W. Kimryn ;
Linehan, W. Marston .
CELL REPORTS, 2018, 23 (01) :313-+
[58]   Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma [J].
Rini, Brian I. ;
Plimack, Elizabeth R. ;
Stus, Viktor ;
Gafanov, Rustem ;
Hawkins, Robert ;
Nosov, Dmitry ;
Pouliot, Frederic ;
Alekseev, Boris ;
Soulieres, Denis ;
Melichar, Bohuslav ;
Vynnychenko, Ihor ;
Kryzhanivska, Anna ;
Bondarenko, Igor ;
Azevedo, Sergio J. ;
Borchiellini, Delphine ;
Szczylik, Cezary ;
Markus, Maurice ;
McDermott, Raymond S. ;
Bedke, Jens ;
Tartas, Sophie ;
Chang, Yen-Hwa ;
Tamada, Satoshi ;
Shou, Qiong ;
Perini, Rodolfo F. ;
Chen, Mei ;
Atkins, Michael B. ;
Powles, Thomas .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (12) :1116-1127
[59]   Renal cell carcinoma [J].
Rini, Brian I. ;
Campbell, Steven C. ;
Escudier, Bernard .
LANCET, 2009, 373 (9669) :1119-1132
[60]   limma powers differential expression analyses for RNA-sequencing and microarray studies [J].
Ritchie, Matthew E. ;
Phipson, Belinda ;
Wu, Di ;
Hu, Yifang ;
Law, Charity W. ;
Shi, Wei ;
Smyth, Gordon K. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (07) :e47