Microbiome-functionality in anaerobic digesters: A critical review

被引:48
作者
Zhang, Xingxing [1 ]
Wang, Yiwei [1 ]
Jiao, Pengbo [1 ]
Zhang, Ming [1 ]
Deng, Ye [2 ]
Jiang, Chengying [3 ]
Liu, Xian-Wei [4 ]
Lou, Liping [5 ]
Li, Yongmei [6 ]
Zhang, Xu-Xiang [7 ]
Ma, Liping [1 ,8 ]
机构
[1] East China Normal Univ, Shanghai Engn Res Ctr Biotransformat Organ Solid W, Sch Ecol & Environm Sci, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Shanghai 200241, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, CAS Key Lab Environm Biotechnol, Beijing 100085, Peoples R China
[3] Univ Chinese Acad Sci, Inst Microbiol, Chinese Acad Sci, State Key Lab Microbial Resources, Beijing 100101, Peoples R China
[4] Univ Sci & Technol China, Chinese Acad Sci, Key Lab Urban Pollutant Convers, Dept Environm Sci & Engn, Hefei 230026, Peoples R China
[5] Zhejiang Univ, Dept Environm Engn, Hangzhou 310029, Peoples R China
[6] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
[7] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China
[8] Minist Nat Resources, Technol Innovat Ctr Land Spatial Ecorestorat Metro, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Anaerobic digestion; Multi-omics; Microbial ecology; Microbial interactions; Optimization strategies; FOOD WASTE; FERMENTATION; MATTER; ENZYMES;
D O I
10.1016/j.watres.2023.120891
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
引用
收藏
页数:18
相关论文
共 112 条
[1]   Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis [J].
Aguiar-Pulido, Vanessa ;
Huang, Wenrui ;
Suarez-Ulloa, Victoria ;
Cickovski, Trevor ;
Mathee, Kalai ;
Narasimhan, Giri .
EVOLUTIONARY BIOINFORMATICS, 2016, 12 :5-16
[2]   Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production [J].
Amin, Farrukh Raza ;
Khalid, Habiba ;
El-Mashad, Hamed M. ;
Chen, Chang ;
Liu, Guangqing ;
Zhang, Ruihong .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 763 (763)
[3]   Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals [J].
Angenent, Largus T. ;
Richter, Hanno ;
Buckel, Wolfgang ;
Spirito, Catherine M. ;
Steinbusch, Kirsten J. J. ;
Plugge, Caroline M. ;
Strik, David P. B. T. B. ;
Grootscholten, Tim I. M. ;
Buisman, Cees J. N. ;
Hamelers, Hubertus V. M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (06) :2796-2810
[4]  
Baker BJ, 2020, NAT MICROBIOL, V5, P887, DOI 10.1038/s41564-020-0715-z
[5]   Lignocellulolytic microbiomes for augmenting lignocellulose degradation in anaerobic digestion [J].
Basak, Bikram ;
Ahn, Yongtae ;
Kumar, Ramesh ;
Hwang, Jae-Hoon ;
Kim, Ki-Hyun ;
Jeon, Byong-Hun .
TRENDS IN MICROBIOLOGY, 2022, 30 (01) :6-9
[6]   An 'omics' approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge [J].
Beale, D. J. ;
Karpe, A. V. ;
McLeod, J. D. ;
Gondalia, S. V. ;
Muster, T. H. ;
Othman, M. Z. ;
Palombo, E. A. ;
Joshi, D. .
WATER RESEARCH, 2016, 88 :346-357
[7]   Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery [J].
Bernard, Guillaume ;
Pathmanathan, Jananan S. ;
Lannes, Romain ;
Lopez, Philippe ;
Bapteste, Eric .
GENOME BIOLOGY AND EVOLUTION, 2018, 10 (03) :707-715
[8]   Microbial communities and their enzymes facilitate degradation of recalcitrant polymers in anaerobic digestion [J].
Blair, Elaina M. ;
Dickson, Katharine L. ;
O'Malley, Michelle A. .
CURRENT OPINION IN MICROBIOLOGY, 2021, 64 :100-108
[9]   Methanogenesis and the Wood-Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association [J].
Borrel, Guillaume ;
Adam, Panagiotis S. ;
Gribaldo, Simonetta .
GENOME BIOLOGY AND EVOLUTION, 2016, 8 (06) :1706-1711
[10]   Anaerobic bioconversion of food waste into energy: A critical review [J].
Braguglia, Camilla M. ;
Gallipoli, Agata ;
Gianico, Andrea ;
Pagliaccia, Pamela .
BIORESOURCE TECHNOLOGY, 2018, 248 :37-56