Spatiotemporal Masked Autoencoder with Multi-Memory and Skip Connections for Video Anomaly Detection

被引:5
|
作者
Fu, Yan [1 ]
Yang, Bao [1 ]
Ye, Ou [1 ]
机构
[1] Xian Univ Sci & Technol, Sch Comp Sci & Technol, Xian 710054, Peoples R China
关键词
video anomaly detection; memory network; spatiotemporal masked autoencoder; vision transformer; skip connections;
D O I
10.3390/electronics13020353
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video anomaly detection is a critical component of intelligent video surveillance systems,extensively deployed and researched in industry and academia. However, existing methods have astrong generalization ability for predicting anomaly samples. They cannot utilize high-level semanticand temporal contextual information in videos, resulting in unstable prediction performance. Toalleviate this issue, we propose an encoder-decoder model named SMAMS, based on spatiotemporalmasked autoencoder and memory modules. First, we represent and mask some of the video eventsusing spatiotemporal cubes. Then, the unmasked patches are inputted into the spatiotemporalmasked autoencoder to extract high-level semantic and spatiotemporal features of the video events.Next, we add multiple memory modules to store unmasked video patches of different feature layers.Finally, skip connections are introduced to compensate for crucial information loss caused by thememory modules. Experimental results show that the proposed method outperforms state-of-the-artmethods, achieving AUC scores of 99.9%, 94.8%, and 78.9% on the UCSD Ped2, CUHK Avenue, andShanghai Tech datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multi-memory video anomaly detection based on scene object distribution
    Hongjun Li
    Jinyi Chen
    Xiaohu Sun
    Chaobo Li
    Junjie Chen
    Multimedia Tools and Applications, 2023, 82 : 35557 - 35583
  • [2] Multi-memory video anomaly detection based on scene object distribution
    Li, Hongjun
    Chen, Jinyi
    Sun, Xiaohu
    Li, Chaobo
    Chen, Junjie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 35557 - 35583
  • [3] Residual Spatiotemporal Autoencoder with Skip Connected and Memory Guided Network for Detecting Video Anomalies
    Chandrakala, S.
    Srinivas, V
    Deepak, K.
    NEURAL PROCESSING LETTERS, 2021, 53 (06) : 4677 - 4692
  • [4] Residual Spatiotemporal Autoencoder with Skip Connected and Memory Guided Network for Detecting Video Anomalies
    S. Chandrakala
    V. Srinivas
    K. Deepak
    Neural Processing Letters, 2021, 53 : 4677 - 4692
  • [5] Point Cloud Video Anomaly Detection Based on Point Spatiotemporal Autoencoder
    He, Tengjiao
    Wang, Wenguang
    Zeng, Guoqi
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 20884 - 20895
  • [6] Memory-augmented skip-connected autoencoder for unsupervised anomaly detection of rocket engines with multi-source fusion
    Yan, Haodong
    Liu, Zijun
    Chen, Jinglong
    Feng, Yong
    Wang, Jun
    ISA TRANSACTIONS, 2023, 133 : 53 - 65
  • [7] Unsupervised Anomaly Detection in Medical Images with a Memory-Augmented Multi-level Cross-Attentional Masked Autoencoder
    Tian, Yu
    Pang, Guansong
    Liu, Yuyuan
    Wang, Chong
    Chen, Yuanhong
    Liu, Fengbei
    Singh, Rajvinder
    Verjans, Johan W.
    Wang, Mengyu
    Carneiro, Gustavo
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2023, PT II, 2024, 14349 : 11 - 21
  • [8] Memory Clustering Autoencoder Method for Human Action Anomaly Detection on Surveillance Camera Video
    Yan, Mingchao
    Xiong, Yonghua
    She, Jinhua
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 20715 - 20728
  • [9] Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
    Wang, Bokun
    Yang, Caiqian
    SENSORS, 2022, 22 (12)
  • [10] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941