Degenerate solitons in a generalized nonlinear Schrödinger equation

被引:5
|
作者
Wang, Meng [1 ]
Yang, Yan-Fei [1 ]
机构
[1] Air Force Early Warning Acad, Dept Basic, Wuhan 430019, Hubei, Peoples R China
关键词
Generalized nonlinear Schrodinger equation; Modified generalized Darboux transformation; Semirational solutions; Degenerate solitons; ORDER DISPERSION OPERATORS; SCHRODINGER SYSTEM; BREATHER;
D O I
10.1007/s11071-023-09207-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Today, nonlinear Schrodinger-type equations are the focus of explorers and scientists. Hereby, we look into a generalized nonlinear Schrodinger equation by constructing the modified generalized Darboux transformation and analysing the type-I, type-II and type-III degenerate solitons for generalized nonlinear Schrodinger equation via some semirational solutions. Type-I degenerate solitons refer to the degenerate solitons, type-II degenerate solitons mean the interactions between the solitons and the degenerate solitons, and type-III degenerate solitons denote the bound states among a series of the degenerate solitons. We hope that the mathematical research method used in this paper could provide some theoretical assistance for future research on the nonlinear Schrodinger-type equations.
引用
收藏
页码:3763 / 3769
页数:7
相关论文
共 50 条
  • [1] Degenerate solitons in a generalized nonlinear Schrödinger equation
    Meng Wang
    Yan-Fei Yang
    Nonlinear Dynamics, 2024, 112 : 3763 - 3769
  • [2] Formation of solitons with shape changing for a generalized nonlinear Schrödinger equation in an optical fiber
    Muniyappan, A.
    Parasuraman, E.
    Seadawy, Aly R.
    Ramkumar, S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [3] Degenerate and bound-state solitons of a novel Kundu-nonlinear Schr?dinger equation based on generalized Darboux transformation
    Zhao, Qiulan
    Zhang, Xuejie
    Liu, Fahui
    OPTIK, 2023, 281
  • [4] A generalized nonlinear Schrödinger equation with logarithmic nonlinearity and its Gaussian solitary wave
    Hosseini, K.
    Alizadeh, F.
    Hincal, E.
    Kaymakamzade, B.
    Dehingia, K.
    Osman, M. S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [5] Dynamics of spatiotemporal soliton solutions to a generalized nonlinear Schrödinger equation with inhomogeneous coefficients
    Tian, Feng-Xia
    Zhao, Yuan
    He, Jun-Rong
    Xu, Siliu
    RESULTS IN PHYSICS, 2023, 53
  • [6] Explicit breather solution of the nonlinear Schrödinger equation
    R. Conte
    Theoretical and Mathematical Physics, 2021, 209 : 1357 - 1366
  • [7] Soliton solutions of a class of generalized nonlinear schrödinger equations
    Cao Q.
    Zhang T.
    Djidjeli K.
    Price G.W.
    Twizell E.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (4) : 389 - 398
  • [8] Taking into consideration a fifth-order nonlinear Schrödinger equation in an optical fiber
    Wang, Meng
    Yang, Yan-Fei
    Chen, Lan-Hua
    Zhu, Si-Ru
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [9] An insight into the solitonic features of the nonlinear generalized higher-order Schrödinger equation using the solver method
    Alhazmi, Hadil
    Bajri, Sanaa A.
    El-Shewy, E. K.
    Abdelrahman, Mahmoud A. E.
    AIP ADVANCES, 2024, 14 (10)
  • [10] Coexistence of the breather and the rogue waves for a coupled nonlinear Schrödinger equation
    Ya-Hui Guo
    Da-Wei Zuo
    Pramana, 97