weakly coupled systems of semi-linear fractional σ evolution equations with mass and different power nonlinearities

被引:0
作者
Mezadek, Abdelatif Kainane [1 ]
机构
[1] Hassiba Benbouali Univ Chlef, Fac Exact Sci & Informat, Lab Math & Applicat, Ouled Fares 021800, Chlef, Algeria
关键词
Fractional equations; global in time existence; loss of decay; small data solutions; weakly coupled system; sigma evolution equations; CALCULUS;
D O I
10.1007/s00009-023-02561-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested to study the global (in time) existence of small data Sobolev solutions to the Cauchy problem for weakly coupled systems of semi-linear fractional sigma-evolution equations with mass and different power nonlinearities. Using L (R)-L-q estimates of Sobolev solutions to related linear models with vanishing right-hand side, we explain connections between regularity assumptions for the data and the admissible range of exponents (p(1),p(2)) in (1.2) which allow to prove the global (in time) existence of small data Sobolev solutions.
引用
收藏
页数:15
相关论文
共 8 条
  • [1] Cui S, 2001, NONLINEAR ANAL-THEOR, V43, P293
  • [2] Kainane Mezadek A., 2018, Nonlinear Differ. Equ. Appl, V25, P1
  • [3] Kilbas A, 2006, Theory and Applications of Fractional Differential Equations, P204
  • [4] Application of fractional calculus to fluid mechanics
    Kulish, VV
    Lage, JL
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (03): : 803 - 806
  • [5] Modeling the cardiac tissue electrode interface using fractional calculus
    Magin, R. L.
    Ovadia, M.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1431 - 1442
  • [6] Mohammed DA., 2023, Symmetry, V15, P1341, DOI [10.3390/sym15071341, DOI 10.3390/SYM15071341]
  • [7] Podlubny I., 1999, Mathematics in Scinece and Engineering, V198
  • [8] Application of fractional calculus to ultrasonic wave propagation in human cancellous bone
    Sebaa, N.
    Fellah, Z. E. A.
    Lauriks, W.
    Depollier, C.
    [J]. SIGNAL PROCESSING, 2006, 86 (10) : 2668 - 2677