On Geometry of Equiform Smarandache Ruled Surfaces Via Equiform Frame in Minkowski 3-Space

被引:0
作者
Solouma, Emad [1 ,2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
来源
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL | 2023年 / 18卷 / 01期
关键词
Ruled surfaces; Equiform frame; Minkowski; 3-space; Smarandache curve;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some geometric properties of equiform Smarandache ruled surfaces in Minkowski space E13 using an equiform frame are investigated. Also, we give the sufficient conditions that make these surfaces are equiform developable and equiform minimal related to the equiform curvatures and when the equiform base curve contained in a plane or general helix. Finally, we provide an example, such as these surfaces.
引用
收藏
页数:15
相关论文
共 27 条
[1]  
Al-Dayel Ibrahim, 2021, Advances in Mathematical Physics, V2021, P1
[2]  
Ashbacher C., 1997, Smarandache Notions Journal, V8, P212
[3]  
Aydin ME, 2013, STUD U BABES-BOL MAT, V58, P393
[4]  
Barbosa J.L.M., 1986, Minimal Surfaces in R3
[5]   THERE IS MORE THAN ONE WAY TO FRAME A CURVE [J].
BISHOP, RL .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03) :246-251
[6]  
Do Carmo M. P., 2016, Differential geometry of curves and surfaces, Vsecond
[7]  
etin M., 2014, Gen. Math. Notes, V20, P50
[8]   Construction of developable surfaces using generalized C-Bezier bases with shape parameters [J].
Hu, Gang ;
Cao, Huanxin ;
Wu, Junfeng ;
Wei, Guo .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)
[9]  
Iseri H., 2002, Smarandache Manifolds
[10]   Minimal surfaces from infinitesimal deformations of circle packings [J].
Lam, Wai Yeung .
ADVANCES IN MATHEMATICS, 2020, 362