On almost stable linear Weingarten hypersurfaces

被引:0
作者
Roth, Julien [1 ]
Upadhyay, Abhitosh [2 ]
机构
[1] Univ Gustave Eiffel, CNRS, LAMA, UMR 8050, F-77447 Marne La Vallee, France
[2] Indian Inst Technol, Sch Math & Comp Sci, Farmagudi 403401, Goa, India
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 189卷
关键词
Hypersurfaces; Higher order mean curvatures; Stability; MEAN-CURVATURE; STABILITY;
D O I
10.1016/j.bulsci.2023.103343
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that generalized linear Weingarten hypersurfaces of the Euclidean space which are almost stable for the associated stability problem are geodesic spheres.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:20
相关论文
共 26 条
  • [1] STABLE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE
    ALENCAR, H
    DOCARMO, M
    COLARES, AG
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (01) : 117 - 131
  • [2] Alencar H., 1993, ANN GLOB ANAL GEOM, V11, P387
  • [3] STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS
    BARBOSA, JL
    DOCARMO, M
    ESCHENBURG, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) : 123 - 138
  • [4] STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE
    BARBOSA, JL
    DOCARMO, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) : 339 - 353
  • [5] Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
  • [6] Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere
    Chen, Hang
    Wang, Xianfeng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 658 - 670
  • [7] The stability of hypersurfaces revisited
    da Silva, Jonatan F.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2016, 179 (02): : 293 - 303
  • [8] STABILITY OF GENERALIZED LINEAR WEINGARTEN HYPERSURFACES IMMERSED IN THE EUCLIDEAN SPACE
    da Silva, Jonathan F.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    [J]. PUBLICACIONS MATEMATIQUES, 2018, 62 (01) : 95 - 111
  • [9] de Lima HF, 2011, ARCH MATH-BRNO, V47, P119
  • [10] Absence of bubbling phenomena for non-convex anisotropic nearly umbilical and quasi-Einstein hypersurfaces
    De Rosa, Antonio
    Gioffre, Stefano
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 780 : 1 - 40