Quantitative performance analysis and comparison of optimal-continuum Gaussian basis sets for high-harmonic generation spectra

被引:8
作者
Morassut, C. [1 ,2 ]
Coccia, E. [2 ]
Luppi, E. [1 ]
机构
[1] Sorbonne Univ, CNRS, Lab Chim Theor, F-75005 Paris, France
[2] Univ Trieste, Dipartimento Sci Chim & Farmaceut, Via L Giorgieri 1, I-34137 Trieste, Italy
关键词
CONFIGURATION-INTERACTION-SINGLES; ELECTRONIC OPTICAL-RESPONSE; TD-CI SIMULATION; MOLECULES; ATTOSECOND; DYNAMICS; URACIL; REPRESENTATION; SPECTROSCOPY; THYMINE;
D O I
10.1063/5.0153825
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum-chemistry methods in the time domain with Gaussian basis sets are increasingly used to compute high-harmonic generation (HHG) spectra of atomic and molecular systems. The quality of these approaches is limited by the accuracy of Gaussian basis sets to describe continuum energy states. In the literature, optimal-continuum Gaussian basis sets have been proposed: Kaufmann et al. [J. Phys. B: At., Mol. Opt. Phys. 22, 2223 (1989)], Wozniak et al. [J. Chem. Phys. 154, 094111 (2021)], Nestmann and Peyerimhoff [J. Phys. B: At., Mol. Opt. Phys. 23, L773 (1990)], Faure et al. [Comput. Phys. Commun. 144, 224 (2002)], and Krause et al. [J. Chem. Phys. 140, 174113 (2014)]. In this work, we have compared the performances of these basis sets to simulate HHG spectra of H atom at different laser intensities. We have also investigated different strategies to balance basis sets with these continuum functions, together with the role of angular momentum. To quantify the performance of the different basis sets, we introduce local and global HHG descriptors. Comparisons with the grid and exact calculations are also provided.
引用
收藏
页数:14
相关论文
共 76 条
[1]   Fitting continuum wave functions with complex Gaussians [J].
Ammar, A. ;
Leclerc, A. ;
Ancarani, L. U. .
31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), 2020, 1412
[2]   Multicenter integrals involving complex Gaussian-type functions [J].
Ammar, Abdallah ;
Leclerc, Arnaud ;
Ancarani, Lorenzo Ugo .
NEW ELECTRON CORRELATION METHODS AND THEIR APPLICATIONS, AND USE OF ATOMIC ORBITALS WITH EXPONENTIAL ASYMPTOTES, 2021, 83 :287-304
[3]   A complex Gaussian approach to molecular photoionization [J].
Ammar, Abdallah ;
Ancarani, Lorenzo Ugo ;
Leclerc, Arnaud .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (32) :2294-2305
[4]   Applications of B-splines in atomic and molecular physics [J].
Bachau, H ;
Cormier, E ;
Decleva, P ;
Hansen, JE ;
Martín, F .
REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (12) :1815-1943
[5]  
Baker S, 2011, NAT PHOTONICS, V5, P665, DOI [10.1038/NPHOTON.2011.256, 10.1038/nphoton.2011.256]
[6]   Quantum simulation of high-order harmonic spectra of the hydrogen atom [J].
Bandrauk, A. D. ;
Chelkowski, S. ;
Diestler, D. J. ;
Manz, J. ;
Yuan, K. -J. .
PHYSICAL REVIEW A, 2009, 79 (02)
[7]   Many-electron dynamics in laser-driven molecules: wavefunction theory vs. density functional theory [J].
Bedurke, Florian ;
Klamroth, Tillmann ;
Saalfrank, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (24) :13544-13560
[8]   Discriminating organic isomers by high harmonic generation: A time-dependent configuration interaction singles study [J].
Bedurke, Florian ;
Klamroth, Tillmann ;
Krause, Pascal ;
Saalfrank, Peter .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (23)
[9]   Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields [J].
Bruner, Barry D. ;
Masin, Zdenek ;
Negro, Matteo ;
Morales, Felipe ;
Brambila, Danilo ;
Devetta, Michele ;
Facciala, Davide ;
Harvey, Alex G. ;
Ivanov, Misha ;
Mairesse, Yann ;
Patchkovskii, Serguei ;
Serbinenko, Valeria ;
Soifer, Hadas ;
Stagira, Salvatore ;
Vozzi, Caterina ;
Dudovich, Nirit ;
Smirnova, Olga .
FARADAY DISCUSSIONS, 2016, 194 :369-405
[10]   Advances in attosecond science [J].
Calegari, Francesca ;
Sansone, Giuseppe ;
Stagira, Salvatore ;
Vozzi, Caterina ;
Nisoli, Mauro .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (06)