Microbial production of cis,cis-muconic acid from aromatic compounds in engineered Pseudomonas

被引:4
|
作者
He, Siyang [1 ,2 ]
Wang, Weiwei [1 ,2 ]
Wang, Weidong [3 ]
Hu, Haiyang [1 ,2 ]
Xu, Ping [1 ,2 ]
Tang, Hongzhi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
[3] Northeast Forestry Univ, Coll Life Sci, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Biodegradation; Polycyclic aromatic hydrocarbons; Biological funneling; cis; cis -muconic acid; Pseudomonas; METABOLISM; PATHWAY; DEGRADATION; POLLUTANTS; BENZOATE; LIGNIN;
D O I
10.1016/j.synbio.2023.08.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Industrial expansion has led to environmental pollution by xenobiotic compounds like polycyclic aromatic hydrocarbons and monoaromatic hydrocarbons. Pseudomonas spp. have broad metabolic potential for degrading aromatic compounds. The objective of this study was to develop a "biological funneling" strategy based on genetic modification to convert complex aromatic compounds into cis,cis-muconate (ccMA) using Pseudomonas putida B6-2 and P. brassicacearum MPDS as biocatalysts. The engineered strains B6-2 (B6-2 & UDelta;catB & UDelta;salC) and MPDS (MPDS & UDelta;salC(pUCP18k-catA)) thrived with biphenyl or naphthalene as the sole carbon source and produced ccMA, attaining molar conversions of 95.3% (ccMA/biphenyl) and 100% (ccMA/naphthalene). Under mixed substrates, B6-2 & UDelta;catB & UDelta;salC grew on biphenyl as a carbon source and transformed ccMA from non-growth substrates benzoate or salicylate to obtain higher product concentration. Inserting exogenous clusters like bedDC1C2AB and xylCMAB allowed B6-2 recombinant strains to convert benzene and toluene to ccMA. In mixed substrates, constructed consortia of engineered strains B6-2 and MPDS specialized in catabolism of biphenyl and naphthalene; the highest molar conversion rate of ccMA from mixed substrates was 85.2% when B6-2 & UDelta;catB & UDelta;salC was added after 24 h of MPDS & UDelta;salC(pUCP18k-catA) incubation with biphenyl and naphthalene. This study provides worthwhile insights into efficient production of ccMA from aromatic hydrocarbons by reusing complex pollutants.
引用
收藏
页码:536 / 545
页数:10
相关论文
共 50 条
  • [31] Bioprocess development for muconic acid production from aromatic compounds and lignin
    Salvachua, Davinia
    Johnson, Christopher W.
    Singer, Christine A.
    Rohrer, Holly
    Peterson, Darren J.
    Black, Brenna A.
    Knapp, Anna
    Beckham, Gregg T.
    GREEN CHEMISTRY, 2018, 20 (21) : 5007 - 5019
  • [32] Catechol 1,2-Dioxygenase From Paracoccus sp. MKU1-A Greener and Cleaner Bio-Machinery for cis, cis-Muconic Acid Production by Recombinant E. coli
    Aravind, Manikka Kubendran
    Varalakshmi, Perumal
    John, Swamidoss Abraham
    Ashokkumar, Balasubramaniem
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [33] Role of cis-cis muconic acid in the catalysis of Pseudomonas putida chlorocatechol 1,2-dioxygenase
    Melo, Fernando A.
    Araujo, Ana P. U.
    Costa-Filho, Antonio J.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2010, 47 (02) : 233 - 237
  • [34] Genome-wide host-pathway interactions affecting cis-cis-muconic acid production in yeast
    Cachera, Paul
    Kurt, Nikolaj Can
    Ropke, Andreas
    Strucko, Tomas
    Mortensen, Uffe H.
    Jensen, Michael K.
    METABOLIC ENGINEERING, 2024, 83 : 75 - 85
  • [35] Reactive extraction of cis,cis-muconic acid from aqueous solution using phosphorus-bonded extractants, tri-n-octylphosphineoxide and tri-n-butyl phosphate: Equilibrium and thermodynamic study
    Demir, Ozge
    Gok, Asli
    Uslu, Hasan
    Kirbaslar, Sah Ismail
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 272
  • [36] Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440
    Bentley, Gayle J.
    Narayanan, Niju
    Jha, Ramesh K.
    Salvachua, Davinia
    Elmore, Joshua R.
    Peabody, George L.
    Black, Brenna A.
    Ramirez, Kelsey
    De Capite, Annette
    Michener, William E.
    Werner, Allison Z.
    Klingeman, Dawn M.
    Schindel, Heidi S.
    Nelson, Robert
    Foust, Lindsey
    Guss, Adam M.
    Dale, Taraka
    Johnson, Christopher W.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2020, 59 : 64 - 75
  • [37] pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1
    van Duuren, Jozef B. J. H.
    Wijte, Dorien
    Karge, Bianka
    dos Santos, Vitor A. P. Martins
    Yang, Yu
    Mars, Astrid E.
    Eggink, Gerrit
    BIOTECHNOLOGY PROGRESS, 2012, 28 (01) : 85 - 92
  • [38] Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-cis,cis-muconate in engineered Pseudomonas putida
    Wirth, Nicolas T.
    Nikel, Pablo, I
    CHEM CATALYSIS, 2021, 1 (06): : 1234 - 1259
  • [39] Muconic Acid Production Using Engineered Pseudomonas putida KT2440 and a Guaiacol-Rich Fraction Derived from Kraft Lignin
    Almqvist, Henrik
    Veras, Henrique
    Li, Kena
    Hidalgo, Javier Garcia
    Hulteberg, Christian
    Gorwa-Grauslund, Marie
    Parachin, Nadia Skorupa
    Carlquist, Magnus
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (24): : 8097 - 8106
  • [40] Polymorphism in cis-trans Muconic Acid Crystals and the Role of C-H•••O Hydrogen Bonds
    Zaczek, Adam J.
    Korter, Timothy M.
    CRYSTAL GROWTH & DESIGN, 2017, 17 (08) : 4458 - 4466