Microbial production of cis,cis-muconic acid from aromatic compounds in engineered Pseudomonas

被引:4
|
作者
He, Siyang [1 ,2 ]
Wang, Weiwei [1 ,2 ]
Wang, Weidong [3 ]
Hu, Haiyang [1 ,2 ]
Xu, Ping [1 ,2 ]
Tang, Hongzhi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
[3] Northeast Forestry Univ, Coll Life Sci, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Biodegradation; Polycyclic aromatic hydrocarbons; Biological funneling; cis; cis -muconic acid; Pseudomonas; METABOLISM; PATHWAY; DEGRADATION; POLLUTANTS; BENZOATE; LIGNIN;
D O I
10.1016/j.synbio.2023.08.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Industrial expansion has led to environmental pollution by xenobiotic compounds like polycyclic aromatic hydrocarbons and monoaromatic hydrocarbons. Pseudomonas spp. have broad metabolic potential for degrading aromatic compounds. The objective of this study was to develop a "biological funneling" strategy based on genetic modification to convert complex aromatic compounds into cis,cis-muconate (ccMA) using Pseudomonas putida B6-2 and P. brassicacearum MPDS as biocatalysts. The engineered strains B6-2 (B6-2 & UDelta;catB & UDelta;salC) and MPDS (MPDS & UDelta;salC(pUCP18k-catA)) thrived with biphenyl or naphthalene as the sole carbon source and produced ccMA, attaining molar conversions of 95.3% (ccMA/biphenyl) and 100% (ccMA/naphthalene). Under mixed substrates, B6-2 & UDelta;catB & UDelta;salC grew on biphenyl as a carbon source and transformed ccMA from non-growth substrates benzoate or salicylate to obtain higher product concentration. Inserting exogenous clusters like bedDC1C2AB and xylCMAB allowed B6-2 recombinant strains to convert benzene and toluene to ccMA. In mixed substrates, constructed consortia of engineered strains B6-2 and MPDS specialized in catabolism of biphenyl and naphthalene; the highest molar conversion rate of ccMA from mixed substrates was 85.2% when B6-2 & UDelta;catB & UDelta;salC was added after 24 h of MPDS & UDelta;salC(pUCP18k-catA) incubation with biphenyl and naphthalene. This study provides worthwhile insights into efficient production of ccMA from aromatic hydrocarbons by reusing complex pollutants.
引用
收藏
页码:536 / 545
页数:10
相关论文
共 50 条
  • [21] Recombinant xylose-fermenting yeast construction for the co-production of ethanol and cis,cis-muconic acid from lignocellulosic biomass
    Liu T.
    Peng B.
    Huang S.
    Geng A.
    Bioresource Technology Reports, 2020, 9
  • [22] Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range
    Scelfo, S.
    Pirone, R.
    Russo, N.
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 222 : 823 - 827
  • [23] Improvement of cis,cis-Muconic Acid Production in Saccharomyces cerevisiae through Biosensor-Aided Genome Engineering
    Wang, Guokun
    Ozmerih, Suleyman
    Guerreiro, Rogerio
    Meireles, Ana C.
    Carolas, Ana
    Milne, Nicholas
    Jensen, Michael K.
    Ferreira, Bruno S.
    Borodina, Irina
    ACS SYNTHETIC BIOLOGY, 2020, 9 (03): : 634 - 646
  • [24] Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116
    Barton, Nadja
    Horbal, Liliya
    Starck, Soeren
    Kohlstedt, Michael
    Luzhetskyy, Andriy
    Wittmann, Christoph
    METABOLIC ENGINEERING, 2018, 45 : 200 - 210
  • [25] Comments on "Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range"
    Carraher, Jack M.
    Matthiesen, John E.
    Tessonnier, Jean-Philippe
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 224 : 420 - 422
  • [26] Engineering catechol 1,2-dioxygenase by design for improving the performance of the cis, cis-muconic acid synthetic pathway in Escherichia coli
    Han, Li
    Liu, Pi
    Sun, Jixue
    Wu, Yuanqing
    Zhang, Yuanyuan
    Chen, Wujiu
    Lin, Jianping
    Wang, Qinhong
    Ma, Yanhe
    SCIENTIFIC REPORTS, 2015, 5
  • [27] Whole-Cell Bioconversion of Renewable Biomasses-Related Aromatics to cis,cis-Muconic Acid
    Molinari, Filippo
    Pollegioni, Loredano
    Rosini, Elena
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (06) : 2476 - 2485
  • [28] Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in Saccharomyces cerevisiae
    Kakko, Natalia
    Rantasalo, Anssi
    Koponen, Tino
    Vidgren, Virve
    Kannisto, Matti
    Maiorova, Natalia
    Nygren, Heli
    Mojzita, Dominik
    Penttila, Merja
    Jouhten, Paula
    ACS SYNTHETIC BIOLOGY, 2023, 12 (04): : 1021 - 1033
  • [29] Central composite design optimized adsorptive removal of cis,cis-muconic acid by weak basic anion exchangers and activated Carbon
    Isayev, Ismayil
    Demir, Ozge
    Gok, Asli
    Kirbaslar, Sah Ismail
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 14 (22) : 28713 - 28727
  • [30] High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production
    Guzik, Urszula
    Hupert-Kocurek, Katarzyna
    Sitnik, Malgorzata
    Wojcieszynska, Danuta
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2013, 103 (06): : 1297 - 1307