Robustness of Delta Hedging in a Jump-Diffusion Model

被引:1
作者
Bosserhoff, Frank [1 ,2 ]
Stadje, Mitja [1 ,2 ]
机构
[1] Ulm Univ, Inst Insurance Sci, D-89081 Ulm, Germany
[2] Ulm Univ, Inst Financial Math, D-89081 Ulm, Germany
关键词
Delta hedge; robustness; misspecification; good-deal; jump-diffusion; WEAK DIRICHLET PROCESSES; OPTION PRICES; DEAL; SUPERREPLICATION; UNCERTAINTY; BOUNDS; FLOWS;
D O I
10.1137/22M149435X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Suppose an investor aims at Delta hedging a European contingent claim h(S(T)) in a jump-diffusion model, but incorrectly specifies the stock price's volatility and jump sensitivity, so that any hedging strategy is calculated under a misspecified model. When does the erroneously computed strategy approximate the true claim in an appropriate sense? If the misspecified volatility and jump sensitivity dominate the true ones, we show that following the misspecified Delta strategy does superreplicate h(S(T)) in expectation among a wide collection of models. We also show that if a robust pricing operator with a whole class of models is used, the corresponding hedge is dominating the contingent claim under each model in expectation. Such a hedging error is also called a good-deal or a \rho -arbitrage. Moreover, in general the misspecified price of the option dominates the true one if the volatility and the jump sensitivity are overestimated. Our results rely on proving stochastic flow properties of the jump-diffusion and the convexity of the contingent claim's value function.
引用
收藏
页码:663 / 703
页数:41
相关论文
共 59 条
[11]   Comparison results for path-dependent options [J].
Bergenthum, Jan ;
Rueschendorf, Ludger .
STATISTICS & RISK MODELING, 2008, 26 (01) :53-72
[12]   General properties of option prices [J].
Bergman, YZ ;
Grundy, BD ;
Wiener, Z .
JOURNAL OF FINANCE, 1996, 51 (05) :1573-1610
[13]   Gain, loss, and asset pricing [J].
Bernardo, AE ;
Ledoit, O .
JOURNAL OF POLITICAL ECONOMY, 2000, 108 (01) :144-172
[14]  
BERTOIN J., 2009, LEVY PROCESSES
[15]   Dynamic Conic Finance via Backward Stochastic Difference Equations [J].
Bielecki, Tomasz R. ;
Cialenco, Igor ;
Chen, Tao .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2015, 6 (01) :1068-1122
[16]   Fully-Dynamic Risk-Indifference Pricing and No-Good-Deal Bounds [J].
Bion-Nadal, Jocelyne ;
Di Nunno, Giulia .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2020, 11 (02) :620-658
[17]  
Bjork T., 2006, Review of Finance, V10, P221, DOI 10.1007/s10679-006-8279-1
[18]  
Bouchard B, 2021, Arxiv, DOI arXiv:2110.03406
[19]   A C0,1-functional Ito's formula and its applications in mathematical finance [J].
Bouchard, Bruno ;
Loeper, Gregoire ;
Tan, Xiaolu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 148 :299-323
[20]   Pricing and hedging in incomplete markets [J].
Carr, P ;
Geman, H ;
Madan, DB .
JOURNAL OF FINANCIAL ECONOMICS, 2001, 62 (01) :131-167