Transparency in Medical Artificial Intelligence Systems

被引:0
作者
Quakulinski, Lars [1 ]
Koumpis, Adamantios [2 ,3 ]
Beyan, Oya Deniz [2 ,3 ,4 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Univ Cologne, Inst Biomed Informat, Fac Med, Cologne, Germany
[3] Univ Cologne, Univ Hosp Cologne, Cologne, Germany
[4] Fraunhofer Inst Appl Informat Technol FIT, St Augustin, Germany
关键词
Explainable AI; transparency; medicine;
D O I
10.1142/S1793351X23630011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many of the artificial intelligence (AI) systems used nowadays have a very high level of accuracy but fail to explain their decisions. This is critical, especially in sensitive areas such as medicine and the health area at large but also for applications of the law, finance etc., where explanations for certain decisions are needed and are often useful and valuable as the decision itself. This paper presents a review of four different methods for creating transparency in AI systems. It also suggests a list of criteria under which circumstances one should use which methods.
引用
收藏
页码:495 / 510
页数:16
相关论文
共 30 条
  • [1] Ancona M., 2019, EXPLAINABLE INTERPRE, P169, DOI [DOI 10.1007/978-3-030-28954-6_9, 10.1007/978-3-030-28954-6_9, DOI 10.1007/978-3-030, DOI 10.1007/978-3-030-28954]
  • [2] Explainable artificial intelligence: an analytical review
    Angelov, Plamen P.
    Soares, Eduardo A.
    Jiang, Richard
    Arnold, Nicholas I.
    Atkinson, Peter M.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
  • [3] [Anonymous], 2016, REGULATION EU 2016 6
  • [4] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [5] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [6] AI Ethics-A Bird's Eye View
    Christoforaki, Maria
    Beyan, Oya
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [7] SCIENTIFIC METHODOLOGY IN CLINICAL MEDICINE .4. ACQUISITION OF CLINICAL DATA
    FEINSTEIN, AR
    [J]. ANNALS OF INTERNAL MEDICINE, 1964, 61 (06) : 1162 - +
  • [8] Deep learning interpretation of echocardiograms
    Ghorbani, Amirata
    Ouyang, David
    Abid, Abubakar
    He, Bryan
    Chen, Jonathan H.
    Harrington, Robert A.
    Liang, David H.
    Ashley, Euan A.
    Zou, James Y.
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [9] A Survey of Methods for Explaining Black Box Models
    Guidotti, Riccardo
    Monreale, Anna
    Ruggieri, Salvatore
    Turin, Franco
    Giannotti, Fosca
    Pedreschi, Dino
    [J]. ACM COMPUTING SURVEYS, 2019, 51 (05)
  • [10] High-Level Expert Group on Artificial Intelligence, 2019, Ethics guidelines for trustworthy AI