On local antimagic chromatic number of cycle-related join graphs II

被引:1
作者
Lau, Gee-Choon [1 ]
Premalatha, K. [2 ]
Arumugam, S. [2 ]
Shiu, Wai Chee [3 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Shah Alam 85000, Malaysia
[2] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil 626126, Tamil Nadu, India
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Local antimagic labeling; local antimagic chromatic number; join graphs;
D O I
10.1142/S1793830923500222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge labeling of a graph G = (V, E) is said to be local antimagic if it is a bijection f : E ? {1, ... , |E|} such that for any pair of adjacent vertices x and y, f(+)(x) ? f(+)(y), where the induced vertex label of x is f(+)(x) =S-e?E(x) f(e) (E(x) is the set of edges incident to x). The local antimagic chromatic number of G, denoted by ?la(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, several sufficient conditions to determine the local antimagic chromatic number of the join of graphs are obtained. We then determine the exact value of the local antimagic chromatic number of many join graphs.
引用
收藏
页数:18
相关论文
共 17 条
[1]   Dense graphs are antimagic [J].
Alon, N ;
Kaplan, G ;
Lev, A ;
Roditty, Y ;
Yuster, R .
JOURNAL OF GRAPH THEORY, 2004, 47 (04) :297-309
[2]   Local Antimagic Vertex Coloring of a Graph [J].
Arumugam, S. ;
Premalatha, K. ;
Baa, Martin ;
Semanicova-Fenovcikova, Andrea .
GRAPHS AND COMBINATORICS, 2017, 33 (02) :275-285
[3]  
Bensmail J, 2017, DISCRETE MATH THEOR, V19
[4]  
Bondy J. A., 1976, Graph theory with applications
[5]  
Chai FS, 2013, AUSTRALAS J COMB, V55, P131
[6]   Nearly magic rectangles [J].
Chai, Feng-Shun ;
Singh, Rakhi ;
Stufken, John .
JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (09) :562-567
[7]   Antimagic Labeling of Regular Graphs [J].
Chang, Feihuang ;
Liang, Yu-Chang ;
Pan, Zhishi ;
Zhu, Xuding .
JOURNAL OF GRAPH THEORY, 2016, 82 (04) :339-349
[8]   Regular Graphs of Odd Degree Are Antimagic [J].
Cranston, Daniel W. ;
Liang, Yu-Chang ;
Zhu, Xuding .
JOURNAL OF GRAPH THEORY, 2015, 80 (01) :28-33
[9]   Regular Bipartite Graphs Are Antimagic [J].
Cranston, Daniel W. .
JOURNAL OF GRAPH THEORY, 2009, 60 (03) :173-182
[10]   Graphs of Large Linear Size Are Antimagic [J].
Eccles, Tom .
JOURNAL OF GRAPH THEORY, 2016, 81 (03) :236-261