In-situ constructed SnO2 gradient buffer layer as a tight and robust interphase toward Li metal anodes in LATP solid state batteries

被引:28
作者
Wang, Lifan [1 ,2 ]
Wang, Leiying [1 ,2 ]
Shi, Qinlin [1 ,2 ]
Zhong, Cong [1 ,2 ]
Gong, Danya [1 ,2 ]
Wang, Xindong [1 ,2 ]
Zhan, Chun [1 ,2 ]
Liu, Guicheng [3 ,4 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Dept Energy Storage Sci & Engn, Beijing 100083, Peoples R China
[3] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
[4] Dongguk Univ, Dept Phys, Seoul 04620, South Korea
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 80卷
基金
中国博士后科学基金; 中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Li1 3Al0 3Ti1 7(PO4)(3); All-solid-state lithium batteries; Interfacial issues; SnO2 gradient buffer layer; Tight and robust interface; ELECTROLYTE; POLYMER; CONDUCTIVITY; INTERFACES; STABILITY;
D O I
10.1016/j.jechem.2023.01.040
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Li1.3Al0.3Ti1.7(PO4)3 (LATP), of much interest owing to its high ionic conductivity, superior air stability, and low cost, has been regarded as one of the most promising solid-state electrolytes for next-generation solid-state lithium batteries (SSLBs). Unfortunately, the commercialization of SSLBs is still impeded by severe interfacial issues, such as high interfacial impedance and poor chemical stability. Herein, we pro-posed a simple and convenient in-situ approach to constructing a tight and robust interface between the Li anode and LATP electrolyte via a SnO2 gradient buffer layer. It is firmly attached to the surface of LATP pellets due to the volume expansion of SnO2 when in-situ reacting with Li metal, and thus effectively alle-viates the physical contact loosening during cycling, as confirmed by the mitigated impedance rising. Meanwhile, the as-formed SnO2/Sn/LixSn gradient buffer layer with low electronic conductivity success-fully protects the LATP electrolyte surface from erosion by the Li metal anode. Additionally, the LixSn alloy formed at the Li surface can effectively regulate uniform lithium deposition and suppress Li dendrite growth. Therefore, this work paves a new way to simultaneously address the chemical instability and poor physical contact of LATP with Li metal in developing low-cost and highly stable SSLBs.(c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 58 条
[1]   Metal-Semiconductor Ohmic and Schottky Contact Interfaces for Stable Li-Metal Electrodes [J].
Ardhi, Ryanda Enggar Anugrah ;
Liu, Guicheng ;
Lee, Joong Kee .
ACS ENERGY LETTERS, 2021, 6 (04) :1432-1442
[2]   Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries [J].
Asano, Tetsuya ;
Sakai, Akihiro ;
Ouchi, Satoru ;
Sakaida, Masashi ;
Miyazaki, Akinobu ;
Hasegawa, Shinya .
ADVANCED MATERIALS, 2018, 30 (44)
[3]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[6]   Lithium metal protected by atomic layer deposition metal oxide for high performance anodes [J].
Chen, Lin ;
Connell, Justin G. ;
Nie, Anmin ;
Huang, Zhennan ;
Zavadil, Kevin R. ;
Klavetter, Kyle C. ;
Yuan, Yifei ;
Sharifi-Asl, Soroosh ;
Shahbazian-Yassar, Reza ;
Libera, Joseph A. ;
Mane, Anil U. ;
Elam, Jeffrey W. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) :12297-12309
[7]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[8]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[9]   Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability [J].
Chen, Yue ;
He, Minghui ;
Zhao, Ning ;
Fu, Jingming ;
Huo, Hanyu ;
zhang, Tao ;
Li, Yiqi ;
Xu, Fangfang ;
Guo, Xiangxin .
JOURNAL OF POWER SOURCES, 2019, 420 :15-21
[10]   A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards [J].
Chen, Yuqing ;
Kang, Yuqiong ;
Zhao, Yun ;
Wang, Li ;
Liu, Jilei ;
Li, Yanxi ;
Liang, Zheng ;
He, Xiangming ;
Li, Xing ;
Tavajohi, Naser ;
Li, Baohua .
JOURNAL OF ENERGY CHEMISTRY, 2021, 59 :83-99