The First Higher Stasheff-Tamari Orders are Quotients of the Higher Bruhat Orders

被引:4
|
作者
Williams, Nicholas J. [1 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
CYCLIC POLYTOPES; LATTICE; TRIANGULATIONS; PERMUTATIONS; ALGEBRA; SETS;
D O I
10.37236/10877
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the conjecture that the higher Tamari orders of Dimakis and Muller-Hoissen coincide with the first higher Stasheff-Tamari orders. To this end, we show that the higher Tamari orders may be conceived as the image of an order-preserving map from the higher Bruhat orders to the first higher Stasheff-Tamari orders. This map is defined by taking the first cross-section of a cubillage of a cyclic zonotope. We provide a new proof that this map is surjective and show further that the map is full, which entails the aforementioned conjecture. We explain how order-preserving maps which are surjective and full correspond to quotients of posets. Our results connect the first higher Stasheff-Tamari orders with the literature on the role of the higher Tamari orders in integrable systems.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Cyclic elements of higher orders
    Whyburn, GT
    AMERICAN JOURNAL OF MATHEMATICS, 1934, 56 : 133 - 146
  • [32] On higher class groups of orders
    Kolster, M
    Laubenbacher, RC
    MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (02) : 229 - 246
  • [33] EXTRAPOLATION FOR HIGHER ORDERS OF CONVERGENCE
    JONES, B
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1976, 17 (01): : 27 - 36
  • [34] On higher class groups of orders
    Manfred Kolster
    Reinhard C. Laubenbacher
    Mathematische Zeitschrift, 1998, 228 : 229 - 246
  • [35] Poissonian correlations of higher orders
    Hauke, Manuel
    Zafeiropoulos, Agamemnon
    JOURNAL OF NUMBER THEORY, 2023, 243 : 202 - 240
  • [36] INDICATRIC TORSIONS OF HIGHER ORDERS
    PAN, TK
    TENSOR, 1972, 26 : 306 - 310
  • [37] Sudakov resummations at higher orders
    Moch, S.
    Vogt, A.
    Vermaseren, J.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 157 : 179 - 186
  • [38] MASLOV CLASSES OF HIGHER ORDERS
    MORVAN, JM
    NIGLIO, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (09): : 271 - 274
  • [39] Biological Problems of Higher Orders
    Schone
    ZEITSCHRIFT FUR PSYCHOLOGIE, 1942, 152 (1-4): : 243 - 244
  • [40] ON THE HIGHER ORDERS OF HYPERSPHERICAL HARMONICS
    ARRIBAS, E
    NAVARRO, J
    DELARIPELLE, MF
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (08) : 1992 - 1996