MOVING SPHERES FOR SEMILINEAR SPECTRAL FRACTIONAL LAPLACIAN EQUATIONS IN THE HALF SPACE

被引:1
|
作者
LI, Jing [1 ]
Ma, Li [2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Moving spheres; spectral fractional Laplacian; monotonicity; symmetry result; ELLIPTIC-EQUATIONS; INTEGRAL-EQUATION; REGULARITY; SYMMETRY; THEOREMS;
D O I
10.3934/dcds.2022172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a direct method of moving spheres for the spectral fractional Laplacian (- increment D)alpha/2 with 0 < alpha < 2 on the half Euclidean space. As one expected, the key ingredient is the narrow region maximum principle, which can be obtained via the hide monotonicity of the kernel used in the definition of the spectral fractional Laplacian. Using this di-rect method of moving spheres, we establish monotonicity or symmetry results for nonlinear spectral Laplacian equations on the half Euclidean space.
引用
收藏
页码:846 / 859
页数:14
相关论文
共 50 条
  • [31] MULTIPLICITY OF SOLUTIONS FOR FRACTIONAL κ(X )-LAPLACIAN EQUATIONS
    Sousa, J. Vanterler da C.
    Araujo, Gabriela L.
    Sousa, Maria V. S.
    Pereira, Amalia R. E.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1543 - 1578
  • [32] SYMMETRY PROPERTIES IN SYSTEMS OF FRACTIONAL LAPLACIAN EQUATIONS
    Wu, Zhigang
    Xu, Hao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1559 - 1571
  • [33] QUALITATIVE PROPERTIES OF POSITIVE SOLUTIONS TO FRACTIONAL p-LAPLACIAN EQUATIONS IN AN UNBOUNDED PARABOLIC DOMAIN
    Zhao, Yonggang
    Li, Jing
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (01) : 25 - 37
  • [34] Periodic solutions of a semilinear elliptic equation with a fractional Laplacian
    Gui, Changfeng
    Zhang, Jie
    Du, Zhuoran
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 363 - 373
  • [35] Sliding Methods for a Class of Generalized Fractional Laplacian Equations
    Sun, Miao
    Liu, Baiyu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2225 - 2247
  • [36] Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian
    Yang, Yi
    Huang, Jin
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 475
  • [37] Variational inequalities for the spectral fractional Laplacian
    R. Musina
    A. I. Nazarov
    Computational Mathematics and Mathematical Physics, 2017, 57 : 373 - 386
  • [38] Efficient Spectral Methods for PDEs with Spectral Fractional Laplacian
    Sheng C.
    Cao D.
    Shen J.
    Journal of Scientific Computing, 2021, 88 (01)
  • [39] On Singular Equations Involving Fractional Laplacian
    Youssfi, Ahmed
    Ould Mohamed Mahmoud, Ghoulam
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (05) : 1289 - 1315
  • [40] Strong Unique Continuation from the Boundary for the Spectral Fractional Laplacian
    De Luca, Alessandra
    Felli, Veronica
    Siclari, Giovanni
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29