Research on the Influence of Negative KERMA Factors on the Power Distribution of a Lead-Cooled Fast Reactor

被引:0
|
作者
Jia, Guanqun [1 ]
Ma, Xubo [1 ]
Zhang, Teng [1 ]
Hu, Kui [1 ]
机构
[1] North China Elect Power Univ, Sch Nucl Sci & Engn, Beinong Rd, Beijing 102206, Peoples R China
来源
JOURNAL OF NUCLEAR ENGINEERING | 2024年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
lead-cooled fast reactor; KERMA factors; MCNP; CALCULATIONAL METHODS; CROSS-SECTIONS; NUCLEAR-DATA;
D O I
10.3390/jne5010001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The accurate calculation of reactor core heating is vital for the design and safety analysis of reactor physics. However, negative KERMA factors may be produced when processing and evaluating libraries of the nuclear data files ENDF/B-VII.1 and ENDF/B-VIII.0 with the NJOY2016 code, and the continuous-energy neutron cross-section library ENDF71x with MCNP also has the same problem. Negative KERMA factors may lead to an unreasonable reactor heating rate. Therefore, it is important to investigate the influence of negative KERMA factors on the calculation of the heating rate. It was also found that negative KERMA factors can be avoided with the CENDL-3.2 library for some nuclides. Many negative KERMA nuclides are found for structural materials; there are many non-fuel regions in fast reactors, and these negative KERMA factors may have a more important impact on the power distribution in non-fuel regions. In this study, the impact of negative KERMA factors on power calculation was analyzed by using the RBEC-M benchmark and replacing the neutron cross-section library containing negative KERMA factors with one containing normal KERMA factors that were generated based on CENDL-3.2. For the RBEC-M benchmark, the deviation in the maximum neutron heating rate between the negative KERMA library and the normal library was 6.46%, and this appeared in the reflector region. In the core region, negative KERMA factors had little influence on the heating rate, and the deviations in the heating rate in most assemblies were within 1% because the heating was mainly caused by fission. However, in the reflector zone, where gamma heating was dominant, the total heating rate varied on account of the gamma heating rate. Therefore, negative KERMA factors for neutrons have little influence on the calculation of fast reactor heating according to the RBEC-M benchmark.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Assessment of RVACS performance for small size lead-cooled fast reactor
    Wu, Guowei
    Jin, Ming
    Chen, Jiayue
    Bai, Yunqing
    Wu, Yican
    ANNALS OF NUCLEAR ENERGY, 2015, 77 : 310 - 317
  • [22] Monte Carlo methods for numerical simulations of the Lead-Cooled Fast Reactor
    Oettingen, M.
    Stanisz, P.
    3RD INTERNATIONAL CONFERENCE ON THE SUSTAINABLE ENERGY AND ENVIRONMENTAL DEVELOPMENT, 2021, 642
  • [23] Brest Lead-Cooled Fast Reactor: From Concept to Technological Implementation
    Adamov, E. O.
    Kaplienko, A. V.
    Orlov, V. V.
    Smirnov, V. S.
    Lopatkin, A. V.
    Lemekhov, V. V.
    Moiseev, A. V.
    ATOMIC ENERGY, 2021, 129 (04) : 179 - 187
  • [24] Use of Neptunium-containing Fuel in Lead-cooled Fast Reactor
    V. A. Apse
    A. N. Shmelev
    G. G. Kulikov
    E. G. Kulikov
    Physics of Atomic Nuclei, 2018, 81 : 1531 - 1535
  • [25] Use of Neptunium-containing Fuel in Lead-cooled Fast Reactor
    Apse, V. A.
    Shmelev, A. N.
    Kulikov, G. G.
    Kulikov, E. G.
    PHYSICS OF ATOMIC NUCLEI, 2018, 81 (11) : 1531 - 1535
  • [26] Transfer function modelling of the Lead-cooled Fast Reactor (LFR) dynamics
    Colombo, Marco
    Cammi, Antonio
    Memoli, Vito
    Papini, Davide
    Ricotti, Marco E.
    PROGRESS IN NUCLEAR ENERGY, 2010, 52 (08) : 715 - 729
  • [27] Numerical simulation on the thermal stratification in the lead pool of lead-cooled fast reactor (LFR)
    Dong, Zhengyang
    Qiu, Hanrui
    Wang, Mingjun
    Tian, Wenxi
    Qiu, Suizheng
    Su, G. H.
    ANNALS OF NUCLEAR ENERGY, 2022, 174
  • [28] Favorable Effects of an Inner Lead Cavity on Neutronic Physics of a Lead-Cooled Fast Reactor
    Shmelev, A. N.
    Apse, V. A.
    Kulikov, G. G.
    Kulikov, E. G.
    PHYSICS OF ATOMIC NUCLEI, 2020, 83 (11) : 1498 - 1501
  • [29] Favorable Effects of an Inner Lead Cavity on Neutronic Physics of a Lead-Cooled Fast Reactor
    A. N. Shmelev
    V. A. Apse
    G. G. Kulikov
    E. G. Kulikov
    Physics of Atomic Nuclei, 2020, 83 : 1498 - 1501
  • [30] Modelling and simulation of the primary system for a small lead-cooled fast reactor with a ratio of core power to flow
    Hu, Yang
    Liang, Lehua
    Li, Chuhao
    Li, Xiaoyu
    Zeng, Wenjie
    Xie, Jinsen
    ANNALS OF NUCLEAR ENERGY, 2022, 167