Research on the Influence of Negative KERMA Factors on the Power Distribution of a Lead-Cooled Fast Reactor

被引:0
|
作者
Jia, Guanqun [1 ]
Ma, Xubo [1 ]
Zhang, Teng [1 ]
Hu, Kui [1 ]
机构
[1] North China Elect Power Univ, Sch Nucl Sci & Engn, Beinong Rd, Beijing 102206, Peoples R China
来源
JOURNAL OF NUCLEAR ENGINEERING | 2024年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
lead-cooled fast reactor; KERMA factors; MCNP; CALCULATIONAL METHODS; CROSS-SECTIONS; NUCLEAR-DATA;
D O I
10.3390/jne5010001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The accurate calculation of reactor core heating is vital for the design and safety analysis of reactor physics. However, negative KERMA factors may be produced when processing and evaluating libraries of the nuclear data files ENDF/B-VII.1 and ENDF/B-VIII.0 with the NJOY2016 code, and the continuous-energy neutron cross-section library ENDF71x with MCNP also has the same problem. Negative KERMA factors may lead to an unreasonable reactor heating rate. Therefore, it is important to investigate the influence of negative KERMA factors on the calculation of the heating rate. It was also found that negative KERMA factors can be avoided with the CENDL-3.2 library for some nuclides. Many negative KERMA nuclides are found for structural materials; there are many non-fuel regions in fast reactors, and these negative KERMA factors may have a more important impact on the power distribution in non-fuel regions. In this study, the impact of negative KERMA factors on power calculation was analyzed by using the RBEC-M benchmark and replacing the neutron cross-section library containing negative KERMA factors with one containing normal KERMA factors that were generated based on CENDL-3.2. For the RBEC-M benchmark, the deviation in the maximum neutron heating rate between the negative KERMA library and the normal library was 6.46%, and this appeared in the reflector region. In the core region, negative KERMA factors had little influence on the heating rate, and the deviations in the heating rate in most assemblies were within 1% because the heating was mainly caused by fission. However, in the reflector zone, where gamma heating was dominant, the total heating rate varied on account of the gamma heating rate. Therefore, negative KERMA factors for neutrons have little influence on the calculation of fast reactor heating according to the RBEC-M benchmark.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] PASSIVE NEGATIVE-REACTIVITY INJECTOR FOR A LEAD-COOLED FAST REACTOR
    Leonov, V. N.
    Rodina, E. A.
    Chernetsov, N. G.
    Chernobrovkin, Yu. V.
    Shevchenko, A. B.
    ATOMIC ENERGY, 2017, 122 (01) : 9 - 14
  • [2] Passive Negative-Reactivity Injector for a Lead-Cooled Fast Reactor
    V. N. Leonov
    E. A. Rodina
    N. G. Chernetsov
    Yu. V. Chernobrovkin
    A. B. Shevchenko
    Atomic Energy, 2017, 122 : 9 - 14
  • [3] Overview of lead-cooled fast reactor activities
    Alemberti, Alessandro
    Smirnov, Valery
    Smith, Craig F.
    Takahashi, Minoru
    PROGRESS IN NUCLEAR ENERGY, 2014, 77 : 300 - 307
  • [4] On the neutronics of European lead-cooled fast reactor
    Cetnar, Jerzy
    Oettingen, Mikolaj
    Domanska, Grazyna
    NUKLEONIKA, 2010, 55 (03) : 317 - 322
  • [5] SSTAR: the US lead-cooled fast reactor (LFR)
    Smith, Craig F.
    Halsey, William G.
    Brown, Neil W.
    Sienicki, James J.
    Moisseytsev, Anton
    Wade, David C.
    JOURNAL OF NUCLEAR MATERIALS, 2008, 376 (03) : 255 - 259
  • [6] The Simulation of Thermal Hydraulic of the Lead-Cooled Fast Reactor
    Sun, Kaili
    Huang, Mei
    Liu, Ran
    Liu, Jun
    PROCEEDINGS OF THE 20TH PACIFIC BASIN NUCLEAR CONFERENCE, VOL 1, 2017, : 739 - 747
  • [7] Transmutation of MAs and LLFPs with a lead-cooled fast reactor
    X. Y. Sun
    L. H. Han
    X. X. Li
    B. L. Hu
    W. Luo
    L. Liu
    Scientific Reports, 13
  • [8] Minor actinide transmutation in the lead-cooled fast reactor
    Liu, Bin
    Han, Jinsheng
    Liu, Fang
    Sheng, Jie
    Li, Zhihao
    PROGRESS IN NUCLEAR ENERGY, 2020, 119
  • [9] Development of Lead-Cooled Fast Reactor Technologies at ENEA Brasimone Research Center
    Martelli, Daniele
    Del Nevo, Alessandro
    Angiolini, Massimo
    Pietro, Agostini
    Tarantino, Mariano
    Grasso, Giacomo
    Lodi, Francesco
    Marinari, Ranieri
    Utili, Marco
    Sartorio, Camillo
    di Piazza, Ivan
    Diamanti, Dario
    Bassini, Serena.
    Cataldo, Sebastiano
    Lorusso, Pierdomenico
    Ciantelli, Chiara
    Cristalli, Carlo
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (05) : 3293 - 3301
  • [10] Transmutation of MAs and LLFPs with a lead-cooled fast reactor
    Sun, X. Y.
    Han, L. H.
    Li, X. X.
    Hu, B. L.
    Luo, W.
    Liu, L.
    SCIENTIFIC REPORTS, 2023, 13 (01)