Spatial and temporal patterns of land surface temperature in Greenland from 2000-2019

被引:0
作者
Pongsiri, Nitinun [1 ]
McNeil, Rhysa [1 ]
Saelim, Rattikan [1 ]
Owusu, Benjamin Atta [2 ]
Sompornchuai-Aree
机构
[1] Minist Educ, Ctr Excellence Math, Commission Higher Educ CHE, Bangkok 10400, Thailand
[2] Multidisciplinary Res & Innovat Ctr, Accra, Ghana
来源
MAUSAM | 2024年 / 75卷 / 02期
关键词
Land surface temperature; Cubic spline; Multivariate regression; Seasonal patterns; Greenland; ICE-SHEET; PRODUCTS; MELT;
D O I
10.54302/mausam.v75i2.6099
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
. Temperature dynamics on the island of Greenland are an important factor in shaping ecological events. Investigating the land surface temperature (LST) patterns is critical for understanding ecological dynamics across different regions. Further melting of the Greenland ice sheet could deva state marine and terrestrial ecosystems. This study used data from Moderate Resolution Imaging Spectroradiometer satellites to understand the seasonal patterns and patterns of LST over the entire island. Focusing on the period between 2000 and 2019, this study used a natural cubic spline model to identify seasonal patterns for all sub-regions. The data were seasonally adjusted and filtered with a second-order autocorrelation component. The spline was fitted again to identify the LST pattern, and a multivariate regression model was then used to adjust for spatial correlation. We illustrate that most of the land surface of Greenland hasstable temperature trends. These observed patterns in LST in Greenland during the study period suggest that the observed ice-sheet melting in Greenland within the last two decades could be due to other factors, not necessarily LST patterns.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 33 条
[1]   Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo [J].
Cazenave, A. ;
Dominh, K. ;
Guinehut, S. ;
Berthier, E. ;
Llovel, W. ;
Ramillien, G. ;
Ablain, M. ;
Larnicol, G. .
GLOBAL AND PLANETARY CHANGE, 2009, 65 (1-2) :83-88
[2]   Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter [J].
Chen, Jing M. ;
Deng, Feng ;
Chen, Mingzhen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2230-2238
[3]  
Church JA, 2013, Sea Level Change
[4]   Greenland warming of 1920-1930 and 1995-2005 [J].
Chylek, P ;
Dubey, MK ;
Lesins, G .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (11)
[5]   Permafrost degradation risk zone assessment using simulation models [J].
Daanen, R. P. ;
Ingeman-Nielsen, T. ;
Marchenko, S. S. ;
Romanovsky, V. E. ;
Foged, N. ;
Stendel, M. ;
Christensen, J. H. ;
Svendsen, K. Hornbech .
CRYOSPHERE, 2011, 5 (04) :1043-1056
[6]   Temperature trend-altitude relationship in China during 1963-2012 [J].
Dong, Danhong ;
Huang, Gang ;
Qu, Xia ;
Tao, Weichen ;
Fan, Guangzhou .
THEORETICAL AND APPLIED CLIMATOLOGY, 2015, 122 (1-2) :285-294
[7]   Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS [J].
Hall, Dorothy K. ;
Comiso, Josefino C. ;
DiGirolamo, Nicolo E. ;
Shuman, Christopher A. ;
Box, Jason E. ;
Koenig, Lora S. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (10) :2114-2120
[8]   Increased runoff from melt from the Greenland Ice Sheet: A response to global warming [J].
Hanna, Edward ;
Huybrechts, Philippe ;
Steffen, Konrad ;
Cappelen, John ;
Huff, Russell ;
Shuman, Christopher ;
Irvine-Fynn, Tristram ;
Wise, Stephen ;
Griffiths, Michael .
JOURNAL OF CLIMATE, 2008, 21 (02) :331-341
[9]   Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change [J].
Hanna, Edward ;
Cappelen, John ;
Fettweis, Xavier ;
Mernild, Sebastian H. ;
Mote, Thomas L. ;
Mottram, Ruth ;
Steffen, Konrad ;
Ballinger, Thomas J. ;
Hall, Richard .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (S1) :E1336-E1352
[10]  
Hanna Edward, 2020, Int. J. Climatol., P1