Parameter estimation and random number generation for student Lévy processes

被引:1
|
作者
Li, Shuaiyu [1 ]
Wu, Yunpei [2 ]
Cheng, Yuzhong [3 ]
机构
[1] Kyushu Univ, Sch Informat Sci & Elect Engn, Fukuoka 8190395, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[3] Kyushu Univ, Joint Grad Sch Math Innovat, Fukuoka 8190395, Japan
关键词
Levy process; Parametric estimation; Quasi maximum likelihood estimation; Neural networks; CNN-LSTM; DRIVEN;
D O I
10.1016/j.csda.2024.107933
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To address the challenges in estimating parameters of the widely applied Student-Levy process, the study introduces two distinct methods: a likelihood -based approach and a data -driven approach. A two-step quasi -likelihood -based method is initially proposed, countering the nonclosed nature of the Student-Levy process's distribution function under convolution. This method utilizes the limiting properties observed in high -frequency data, offering estimations via a quasilikelihood function characterized by asymptotic normality. Additionally, a novel neural -networkbased parameter estimation technique is advanced, independent of high -frequency observation assumptions. Utilizing a CNN-LSTM framework, this method effectively processes sparse, local jump -related data, extracts deep features, and maps these to the parameter space using a fully connected neural network. This innovative approach ensures minimal assumption reliance, end -to -end processing, and high scalability, marking a significant advancement in parameter estimation techniques. The efficacy of both methods is substantiated through comprehensive numerical experiments, demonstrating their robust performance in diverse scenarios.
引用
收藏
页数:17
相关论文
共 49 条
  • [1] Lévy area analysis and parameter estimation for fOU processes via non-geometric rough path theory
    Qian, Zhongmin
    Xu, Xingcheng
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1609 - 1638
  • [2] Likelihood ratio gradient estimation for Meixner distribution and L,vy processes
    Kawai, Reiichiro
    COMPUTATIONAL STATISTICS, 2012, 27 (04) : 739 - 755
  • [3] Numerical methods for L,vy processes
    Hilber, N.
    Reich, N.
    Schwab, C.
    Winter, C.
    FINANCE AND STOCHASTICS, 2009, 13 (04) : 471 - 500
  • [4] On Approximation of Some Lévy Processes
    Taras, Dmytro Ivanenko
    Knopova, Victoria
    Platonov, Denis
    AUSTRIAN JOURNAL OF STATISTICS, 2025, 54 (01) : 177 - 199
  • [5] On Exponential Functionals of L,vy Processes
    Behme, Anita
    Lindner, Alexander
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (02) : 681 - 720
  • [6] Transition Density Estimates for a Class of L,vy and L,vy-Type Processes
    Knopova, Viktorya
    Schilling, Rene L.
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (01) : 144 - 170
  • [7] Maximal Inequalities of the It Integral with Respect to Poisson Random Measures or L,vy Processes on Banach Spaces
    Hausenblas, Erika
    POTENTIAL ANALYSIS, 2011, 35 (03) : 223 - 251
  • [8] Yaglom limit for unimodal Lévy processes
    Armstrong, Gavin
    Bogdan, Krzysztof
    Grzywny, Tomasz
    Lezaj, Lukasz
    Wang, Longmin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (03): : 1688 - 1721
  • [9] Finite Variation of Fractional L,vy Processes
    Bender, Christian
    Lindner, Alexander
    Schicks, Markus
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (02) : 594 - 612
  • [10] Reflected and doubly reflected BSDEs for L,vy processes: Solutions and comparison
    Zhou, Qing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (02): : 333 - 344