On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions

被引:2
|
作者
Beaglehole, Daniel [1 ]
Belkin, Mikhail [1 ,2 ]
Pandit, Parthe [2 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, San Diego, CA 43221 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, San Diego, CA 43221 USA
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2023年 / 5卷 / 04期
关键词
kernel machines; interpolation; consistency; ridgeless regression; benign overfitting; nonparametric regression;
D O I
10.1137/22M1499819
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
"Benign overfitting," the ability of certain algorithms to interpolate noisy training data and yet perform well out-of-sample, has been a topic of considerable recent interest. We show, using a fixed design setup, that an important class of predictors, kernel machines with translation-invariant kernels, does not exhibit benign overfitting in fixed dimensions. In particular, the estimated predictor does not converge to the ground truth with increasing sample size, for any nonzero regression function and any (even adaptive) bandwidth selection. To prove these results, we give exact expressions for the generalization error and its decomposition in terms of an approximation error and an estimation error that elicits a trade-off based on the selection of the kernel bandwidth. Our results apply to commonly used translation-invariant kernels such as Gaussian, Laplace, and Cauchy.
引用
收藏
页码:854 / 872
页数:19
相关论文
共 50 条
  • [11] Modified kernel regression estimation with functional time series data
    Ling, Nengxiang
    Wang, Chao
    Ling, Jin
    STATISTICS & PROBABILITY LETTERS, 2016, 114 : 78 - 85
  • [12] MINIMAX-OPTIMAL NONPARAMETRIC REGRESSION IN HIGH DIMENSIONS
    Yang, Yun
    Tokdar, Surya T.
    ANNALS OF STATISTICS, 2015, 43 (02) : 652 - 674
  • [13] ADAPTIVE BANDWIDTH CHOICE FOR KERNEL REGRESSION
    SCHUCANY, WR
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) : 535 - 540
  • [14] Kernel regression estimators for signal recovery
    Pawlak, M
    Stadtmuller, U
    STATISTICS & PROBABILITY LETTERS, 1997, 31 (03) : 185 - 198
  • [15] A BANDWIDTH SELECTOR FOR BIVARIATE KERNEL REGRESSION
    HERRMANN, E
    WAND, MP
    ENGEL, J
    GASSER, T
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (01): : 171 - 180
  • [16] Kernel Regression in the Presence of Correlated Errors
    De Brabanter, Kris
    De Brabanter, Jos
    Suykens, Johan A. K.
    De Moor, Bart
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 1955 - 1976
  • [17] A boundary kernel for local polynomial regression
    Dong, JP
    Jiang, RF
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (07) : 1549 - 1558
  • [18] Bias reduction in kernel binary regression
    Hazelton, Martin L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4393 - 4402
  • [19] Kernel regression for image processing and reconstruction
    Takeda, Hiroyuki
    Farsiu, Sina
    Milanfar, Peyman
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (02) : 349 - 366
  • [20] Robust nonparametric kernel regression estimator
    Zhao, Ge
    Ma, Yanyuan
    STATISTICS & PROBABILITY LETTERS, 2016, 116 : 72 - 79