On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions

被引:2
|
作者
Beaglehole, Daniel [1 ]
Belkin, Mikhail [1 ,2 ]
Pandit, Parthe [2 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, San Diego, CA 43221 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, San Diego, CA 43221 USA
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2023年 / 5卷 / 04期
关键词
kernel machines; interpolation; consistency; ridgeless regression; benign overfitting; nonparametric regression;
D O I
10.1137/22M1499819
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
"Benign overfitting," the ability of certain algorithms to interpolate noisy training data and yet perform well out-of-sample, has been a topic of considerable recent interest. We show, using a fixed design setup, that an important class of predictors, kernel machines with translation-invariant kernels, does not exhibit benign overfitting in fixed dimensions. In particular, the estimated predictor does not converge to the ground truth with increasing sample size, for any nonzero regression function and any (even adaptive) bandwidth selection. To prove these results, we give exact expressions for the generalization error and its decomposition in terms of an approximation error and an estimation error that elicits a trade-off based on the selection of the kernel bandwidth. Our results apply to commonly used translation-invariant kernels such as Gaussian, Laplace, and Cauchy.
引用
收藏
页码:854 / 872
页数:19
相关论文
共 50 条
  • [1] Sequential fixed-width confidence bands for kernel regression estimation
    Dharmasena, L. S.
    de Silva, B. M.
    Zeephongsekul, P.
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 432 - 436
  • [2] Stahel-Donoho kernel estimation for fixed design nonparametric regression models
    Lin Lu
    Cui Xia
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (12): : 1879 - 1896
  • [3] Stahel-Donoho kernel estimation for fixed design nonparametric regression models
    Lu Lin
    Xia Cui
    Science in China Series A: Mathematics, 2006, 49 : 1879 - 1896
  • [4] Stahel-Donoho kernel estimation for fixed design nonparametric regression models
    LIN Lu & CUI Xia School of Mathematics and System Sciences
    Science in China(Series A:Mathematics), 2006, (12) : 1879 - 1896
  • [5] Kernel regression estimation for incomplete data with applications
    Mojirsheibani, Majid
    Reese, Timothy
    STATISTICAL PAPERS, 2017, 58 (01) : 185 - 209
  • [6] On Convergence Rates of Convex Regression in Multiple Dimensions
    Lim, Eunji
    INFORMS JOURNAL ON COMPUTING, 2014, 26 (03) : 616 - 628
  • [7] Universal Local Linear Kernel Estimators in Nonparametric Regression
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    MATHEMATICS, 2022, 10 (15)
  • [8] Kernel Selection in Nonparametric Regression
    Halconruy, H.
    Marie, N.
    MATHEMATICAL METHODS OF STATISTICS, 2020, 29 (01) : 32 - 56
  • [9] KERNEL DIMENSION REDUCTION IN REGRESSION
    Fukumizu, Kenji
    Bach, Francis R.
    Jordan, Michael I.
    ANNALS OF STATISTICS, 2009, 37 (04) : 1871 - 1905
  • [10] Adaptively weighted kernel regression
    Zheng, Qi
    Gallagher, Colin
    Kulasekera, K. B.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (04) : 855 - 872