Rapid discrimination of Bifidobacterium longum subspecies based on MALDI-TOF MS and machine learning

被引:2
作者
Liu, Kexin [1 ,2 ]
Wang, Yajie [3 ]
Zhao, Minlei [4 ]
Xue, Gaogao [2 ]
Wang, Ailan [2 ]
Wang, Weijie [1 ]
Xu, Lida [2 ]
Chen, Jianguo [4 ]
机构
[1] North China Univ Sci & Technol, Coll Life Sci, Tangshan, Peoples R China
[2] Beijing Hotgen Biotechnol Inc, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Ditan Hosp, Dept Clin Lab, Beijing, Peoples R China
[4] Beijing YuGen Pharmaceut Co Ltd, Beijing, Peoples R China
关键词
Bifidobacterium longum subspecies; MALDI-TOF MS; machine learning; identification; B; longum; infantis; IDENTIFICATION; TIME;
D O I
10.3389/fmicb.2023.1297451
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Although MALDI-TOF mass spectrometry (MS) is widely known as a rapid and cost-effective reference method for identifying microorganisms, its commercial databases face limitations in accurately distinguishing specific subspecies of Bifidobacterium. This study aimed to explore the potential of MALDI-TOF MS protein profiles, coupled with prediction methods, to differentiate between Bifidobacterium longum subsp. infantis (B. infantis) and Bifidobacterium longum subsp. longum (B. longum). The investigation involved the analysis of mass spectra of 59 B. longum strains and 41 B. infantis strains, leading to the identification of five distinct biomarker peaks, specifically at m/z 2,929, 4,408, 5,381, 5,394, and 8,817, using Recurrent Feature Elimination (RFE). To facilate classification between B. longum and B. infantis based on the mass spectra, machine learning models were developed, employing algorithms such as logistic regression (LR), random forest (RF), and support vector machine (SVM). The evaluation of the mass spectrometry data showed that the RF model exhibited the highest performace, boasting an impressive AUC of 0.984. This model outperformed other algorithms in terms of accuracy and sensitivity. Furthermore, when employing a voting mechanism on multi-mass spectrometry data for strain identificaton, the RF model achieved the highest accuracy of 96.67%. The outcomes of this research hold the significant potential for commercial applications, enabling the rapid and precise discrimination of B. longum and B. infantis using MALDI-TOF MS in conjunction with machine learning. Additionally, the approach proposed in this study carries substantial implications across various industries, such as probiotics and pharmaceuticals, where the precise differentiation of specific subspecies is essential for product development and quality control.
引用
收藏
页数:13
相关论文
共 38 条
  • [1] Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries
    Carvalho, M. J.
    Sands, K.
    Thomson, K.
    Portal, E.
    Mathias, J.
    Milton, R.
    Gillespie, D.
    Dyer, C.
    Akpulu, C.
    Boostrom, I
    Hogan, P.
    Saif, H.
    Ferreira, A.
    Nieto, M.
    Hender, T.
    Hood, K.
    Andrews, R.
    Watkins, W. J.
    Hassan, B.
    Chan, G.
    Bekele, D.
    Solomon, S.
    Metaferia, G.
    Basu, S.
    Naha, S.
    Sinha, A.
    Chakravorty, P.
    Mukherjee, S.
    Iregbu, K.
    Modibbo, F.
    Uwaezuoke, S.
    Audu, L.
    Edwin, C. P.
    Yusuf, A. H.
    Adeleye, A.
    Mukkadas, A. S.
    Zahra, R.
    Shirazi, H.
    Muhammad, A.
    Ullah, S. N.
    Jan, M. H.
    Akif, S.
    Mazarati, J. B.
    Rucogoza, A.
    Gaju, L.
    Mehtar, S.
    Bulabula, A. N. H.
    Whitelaw, A.
    Roberts, L.
    Walsh, T. R.
    [J]. NATURE MICROBIOLOGY, 2022, 7 (09) : 1337 - +
  • [2] Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States
    Casaburi, Giorgio
    Duar, Rebbeca M.
    Brown, Heather
    Mitchell, Ryan D.
    Kazi, Sufyan
    Chew, Stephanie
    Cagney, Orla
    Flannery, Robin L.
    Sylvester, Karl G.
    Frese, Steven A.
    Henrick, Bethany M.
    Freeman, Samara L.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains
    Cuenod, Aline
    Aerni, Martina
    Bagutti, Claudia
    Bayraktar, Banu
    Boz, Efe Serkan
    Carneiro, Cynthia Beisert
    Casanova, Carlo
    Coste, Alix T.
    Damborg, Peter
    van Dam, Dirk W.
    Demirci, Mehmet
    Drevinek, Pavel
    Dubuis, Olivier
    Fernandez, Jose
    Greub, Gilbert
    Hrabak, Jaroslav
    Yigitler, Gulen Hurkal
    Hurych, Jakub
    Jensen, Thoger Gorm
    Jost, Geraldine
    Kampinga, Greetje A.
    Kittl, Sonja
    Lammens, Christine
    Lang, Claudia
    Lienhard, Reto
    Logan, Julie
    Maffioli, Carola
    Marekovic, Ivana
    Marschal, Matthias
    Moran-Gilad, Jacob
    Nolte, Oliver
    Oberle, Michael
    Pedersen, Michael
    Pfluger, Valentin
    Pranghofer, Sigrid
    Reichl, Julia
    Rentenaar, Rob J.
    Riat, Arnaud
    Rodriguez-Sanchez, Belen
    Schilt, Camille
    Schlotterbeck, Ann-Kathrin
    Schrenzel, Jacques
    Troib, Shani
    Willems, Elise
    Wootton, Mandy
    Ziegler, Dominik
    Egli, Adrian
    [J]. CLINICAL MICROBIOLOGY AND INFECTION, 2023, 29 (02) : 190 - 199
  • [4] Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning
    De Bruyne, Katrien
    Slabbinck, Bram
    Waegeman, Willem
    Vauterin, Paul
    De Baets, Bernard
    Vandamme, Peter
    [J]. SYSTEMATIC AND APPLIED MICROBIOLOGY, 2011, 34 (01) : 20 - 29
  • [5] Machine Learning Algorithms for Classification of MALDI-TOF MS Spectra from Phylogenetically Closely Related Species Brucella melitensis, Brucella abortus and Brucella suis
    Dematheis, Flavia
    Walter, Mathias C.
    Lang, Daniel
    Antwerpen, Markus
    Scholz, Holger C.
    Pfalzgraf, Marie-Theres
    Mantel, Enrico
    Hinz, Christin
    Wolfel, Roman
    Zange, Sabine
    [J]. MICROORGANISMS, 2022, 10 (08)
  • [6] Integrating the Ecosystem Services Framework to Define Dysbiosis of the Breastfed Infant Gut: The Role of B. infantis and Human Milk Oligosaccharides
    Duar, Rebbeca M.
    Henrick, Bethany M.
    Casaburi, Giorgio
    Frese, Steven A.
    [J]. FRONTIERS IN NUTRITION, 2020, 7
  • [7] Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp.
    Feucherolles, Maureen
    Nennig, Morgane
    Becker, Soeren L.
    Martiny, Delphine
    Losch, Serge
    Penny, Christian
    Cauchie, Henry-Michel
    Ragimbeau, Catherine
    [J]. FRONTIERS IN MICROBIOLOGY, 2022, 12
  • [8] An Improved Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Data Analysis Pipeline for the Identification of Carbapenemase-Producing Klebsiella pneumoniae
    Gato, Eva
    Pedro Constanso, Ignacio
    Candela, Ana
    Galan, Fatima
    Kotska Rodino-Janeiro, Bruno
    Jesus Arroyo, Manuel
    Mendez, Gema
    Mancera, Luis
    Alioto, Tyler
    Gut, Marta
    Gut, Ivo
    Alvarez-Tejado, Miguel
    Rodriguez-Sanchez, Belen
    Bou, German
    Oviano, Marina
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2021, 59 (07)
  • [9] The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations
    Haider, Ali
    Ringer, Marianna
    Kotroczo, Zsolt
    Mohacsi-Farkas, Csilla
    Kocsis, Tamas
    [J]. MICROBIOLOGY RESEARCH, 2023, 14 (01) : 80 - 90
  • [10] Staphylococcus lugdunensis: a Skin Commensal with Invasive Pathogenic Potential
    Heilbronner, Simon
    Foster, Timothy J.
    [J]. CLINICAL MICROBIOLOGY REVIEWS, 2021, 34 (02) : 1 - 18