A Topological Version of Hedetniemi's Conjecture for Equivariant Spaces

被引:1
|
作者
Bui, Vuong [1 ,2 ,3 ]
Daneshpajouh, Hamid Reza [4 ]
机构
[1] Free Univ Berlin, Inst Informat, Takustr 9, D-14195 Berlin, Germany
[2] Univ Montpellier, LIRMM, 161 Rue Ada, F-34095 Montpellier, France
[3] Vietnam Natl Univ, UET, 144 Xuan Thuy St, Hanoi 100000, Vietnam
[4] Univ Nottingham Ningbo China, Dept Math Sci, 199 Taikang East Rd, Ningbo 315100, Peoples R China
关键词
Cross-index; Hedetniemi's conjecture; Mapping index;
D O I
10.1007/s00493-023-00079-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological version of the famous Hedetniemi conjecture says: The mapping index of the Cartesian product of two Z/2- spaces is equal to the minimum of their Z/2-indexes. The main purpose of this article is to study the topological version of the Hedetniemi conjecture for G-spaces. Indeed, we showthat the topological Hedetniemi conjecture cannot be valid for general pairs of G-spaces. More precisely, we show that this conjecture can possibly survive if the group G is either a cyclic p-group or a generalized quaternion group whose size is a power of 2.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 50 条