To Aggregate or Not? Learning with Separate Noisy Labels

被引:13
作者
Wei, Jiaheng [1 ]
Zhu, Zhaowei [1 ]
Luo, Tianyi [2 ]
Amid, Ehsan [3 ]
Kumar, Abhishek [3 ]
Liu, Yang [1 ]
机构
[1] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[2] Amazon Search Sci & AI, Palo Alto, CA USA
[3] Google Res, Brain Team, Mountain View, CA USA
来源
PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023 | 2023年
基金
美国国家科学基金会;
关键词
Crowdsourcing; Label Aggregation; Label Noise; Human Annotation; LOWER BOUNDS; MODELS;
D O I
10.1145/3580305.3599522
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rawly collected training data often comes with separate noisy labels collected from multiple imperfect annotators (e.g., via crowdsourcing). A typical way of using these separate labels is to first aggregate them into one and apply standard training methods. The literature has also studied extensively on effective aggregation approaches. This paper revisits this choice and aims to provide an answer to the question of whether one should aggregate separate noisy labels into single ones or use them separately as given. We theoretically analyze the performance of both approaches under the empirical risk minimization framework for a number of popular loss functions, including the ones designed specifically for the problem of learning with noisy labels. Our theorems conclude that label separation is preferred over label aggregation when the noise rates are high, or the number of labelers/annotations is insufficient. Extensive empirical results validate our conclusions.
引用
收藏
页码:2523 / 2535
页数:13
相关论文
共 78 条
[51]   Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge [J].
Setio, Arnaud Arindra Adiyoso ;
Traverso, Alberto ;
de Bel, Thomas ;
Berens, Moira S. N. ;
van den Bogaard, Cas ;
Cerello, Piergiorgio ;
Chen, Hao ;
Dou, Qi ;
Evelina Fantacci, Maria ;
Geurts, Bram ;
van der Gugten, Robbert ;
Heng, Pheng Ann ;
Jansen, Bart ;
de Kaste, Michael M. J. ;
Kotov, Valentin ;
Lin, Jack Yu-Hung ;
Manders, Jeroen T. M. C. ;
Sonora-Mengana, Alexander ;
Carlos Garcia-Naranjo, Juan ;
Papavasileiou, Evgenia ;
Prokop, Mathias ;
Saletta, Marco ;
Schaefer-Prokop, Cornelia M. ;
Scholten, Ernst T. ;
Scholten, Luuk ;
Snoeren, Miranda M. ;
Lopez Torres, Ernesto ;
Vandemeulebroucke, Jef ;
Walasek, Nicole ;
Zuidhof, Guido C. A. ;
van Ginneken, Bram ;
Jacobs, Colin .
MEDICAL IMAGE ANALYSIS, 2017, 42 :1-13
[52]   Majority Voting and Pairing with Multiple Noisy Labeling [J].
Sheng, Victor S. ;
Zhang, Jing ;
Gu, Bin ;
Wu, Xindong .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (07) :1355-1368
[53]  
Smyth P., 1994, Advances in neural information processing systems, V7
[54]   UCViT: Hardware-Friendly Vision Transformer via Unified Compression [J].
Song, HongRui ;
Wang, Ya ;
Wang, Meiqi ;
Wang, Zhongfeng .
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, :2022-2026
[55]   Learning From Noisy Labels With Deep Neural Networks: A Survey [J].
Song, Hwanjun ;
Kim, Minseok ;
Park, Dongmin ;
Shin, Yooju ;
Lee, Jae-Gil .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) :8135-8153
[56]   Leveraging Peer Communication to Enhance Crowdsourcing [J].
Tang, Wei ;
Ho, Chien-Ju ;
Yin, Ming .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :1794-1805
[57]  
Wang Jianhong, 2021, Advances in Neural Information Processing Systems, V34
[58]   Symmetric Cross Entropy for Robust Learning with Noisy Labels [J].
Wang, Yisen ;
Ma, Xingjun ;
Chen, Zaiyi ;
Luo, Yuan ;
Yi, Jinfeng ;
Bailey, James .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :322-330
[59]  
Wei H, 2022, INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2022: TRAFFIC OPERATIONS AND ENGINEERING, P200
[60]  
Wei HX, 2021, ADV NEUR IN, V34