INTEGRABILITY OF VECTOR FIELDS AND MEROMORPHIC SOLUTIONS

被引:0
作者
Rebelo, Julio c. [1 ,2 ]
Reis, Helena [3 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Toulouse, UMR 5219, 118 Route Narbonne, F-31062 Toulouse, France
[3] Univ Porto, Fac Econ, Ctr Matemat, Porto, Portugal
关键词
Meromorphic solutions; Liouvillian first integral; foliated Poincare ' metric; Riccati and turbulent foliations; FOLIATIONS; RESOLUTION; EXAMPLES; POINCARE;
D O I
10.17323/1609-4514-2023-23-4-591-624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a one-dimensional holomorphic foliation defined on a complex projective manifold and consider a meromorphic vector field X tangent to F. In this paper, we prove that if the set of integral curves of X that are given by meromorphic maps defined on C is "large enough", then the restriction of F to any invariant complex 2-dimensional analytic set admits a first integral of Liouvillean type. In particular, on C-3, every rational vector field whose solutions are meromorphic functions defined on C admits an invariant analytic set of dimension 2 such that the restriction of the vector field to it yields a Liouville integrable foliation.
引用
收藏
页码:591 / 624
页数:34
相关论文
共 52 条
  • [11] Complements of graphs of meromorphic functions and complete vector fields
    Bustinduy, Alvaro
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (3-4) : 1097 - 1112
  • [12] Completeness is determined by any non-algebraic trajectory
    Bustinduy, Alvaro
    Giraldo, Luis
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (02) : 664 - 679
  • [13] HOLOMORPHIC VECTOR FIELDS ON COMPLEX SURFACES
    CARRELL, J
    HOWARD, A
    KOSNIOWS.C
    [J]. MATHEMATISCHE ANNALEN, 1973, 204 (01) : 73 - 81
  • [14] On nonimbeddability of Hartogs figures into complex manifolds
    Chirka, E.
    Ivashkovich, S.
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2006, 134 (02): : 261 - 267
  • [15] Chirka E., 1989, Soviet Series), V46
  • [16] EPSTEIN DBA, 1977, J LOND MATH SOC, V16, P548
  • [17] Eremenko A., 1997, Complex analysis. I, Encycl. Math. Sci., V85, P141
  • [18] Falconer K., 2004, FRACTAL GEOMETRY MAT
  • [19] Ford L. R., 1951, Automorphic functions, V2nd
  • [20] Garnier R., 1960, Ann. Sci. Ecole Norm. Sup., V77, P123