INTEGRABILITY OF VECTOR FIELDS AND MEROMORPHIC SOLUTIONS

被引:0
作者
Rebelo, Julio c. [1 ,2 ]
Reis, Helena [3 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Toulouse, UMR 5219, 118 Route Narbonne, F-31062 Toulouse, France
[3] Univ Porto, Fac Econ, Ctr Matemat, Porto, Portugal
关键词
Meromorphic solutions; Liouvillian first integral; foliated Poincare ' metric; Riccati and turbulent foliations; FOLIATIONS; RESOLUTION; EXAMPLES; POINCARE;
D O I
10.17323/1609-4514-2023-23-4-591-624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a one-dimensional holomorphic foliation defined on a complex projective manifold and consider a meromorphic vector field X tangent to F. In this paper, we prove that if the set of integral curves of X that are given by meromorphic maps defined on C is "large enough", then the restriction of F to any invariant complex 2-dimensional analytic set admits a first integral of Liouvillean type. In particular, on C-3, every rational vector field whose solutions are meromorphic functions defined on C admits an invariant analytic set of dimension 2 such that the restriction of the vector field to it yields a Liouville integrable foliation.
引用
收藏
页码:591 / 624
页数:34
相关论文
共 52 条
  • [1] Akhiezer D. N., 1995, Aspects of Mathematics, VE27
  • [2] Apanasov B. N., 1991, Mathematics and its Applications (Soviet Series), V40
  • [3] BARTH W., 2004, ERGEB MATH GRENZGEB, V4
  • [4] Belotto da Silva A., arXiv, DOI DOI 10.48550/ARXIV.2110.13072
  • [5] Bishop E., 1964, Michigan Math. J., V11, P289
  • [6] Complete polynomial vector fields on the complex plane
    Brunella, M
    [J]. TOPOLOGY, 2004, 43 (02) : 433 - 445
  • [7] Plurisubharmonic variation of the leafwise Poincare metric
    Brunella, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (02) : 139 - 151
  • [8] Brunella M., 2004, BIRATIONAL GEOMETRY
  • [9] Uniformisation of Foliations by Curves
    Brunella, Marco
    [J]. HOLOMORPHIC DYNAMICAL SYSTEMS, 2010, 1998 : 105 - 163
  • [10] Vector fields with simply connected trajectories transverse to a polynomial
    Bustinduy, Alvaro
    Giraldo, Luis
    [J]. ADVANCES IN MATHEMATICS, 2015, 285 : 1339 - 1357