Variable Stiffness Control of a Soft Rehabilitation Robot with Sliding Mode Method

被引:0
作者
Zhu, Wenxin [1 ]
Cheng, Maotong [1 ]
Lang, Yilin [1 ]
Ren, Qinyuan [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou, Zhejiang, Peoples R China
来源
2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC | 2023年
关键词
soft robots; variable stiffness actuators; pneumatic actuators; Mckibben muscles; antagonistic drives; sliding mode control; ACTUATORS;
D O I
10.1109/CCDC58219.2023.10326966
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In most applications that involve human-robot interactions, compliant actuators with variable stiffness can be used to improve fast and safe motion for robots. The bio-inspired agonist-antagonistic setup of variable stiffness actuator (VSA) systems enable online compliance adaptation through co-contraction of actuator pairs. However, the promise of these platforms is limited by the difficulty of control. In this paper, we develop a sliding mode variable stiffness controller for a soft rehabilitation robot actuated by an antagonistic pair of McKibben muscles. To demonstrate the stability of this controller, the robotic control system is analyzed using the Lyapunov method. Finally, several simulations are conducted on the robot, and the results show that the proposed controller has good tracking performance and robustness.
引用
收藏
页码:1514 / 1519
页数:6
相关论文
共 17 条
  • [1] Comparing model-based control methods for simultaneous stiffness and position control of inflatable soft robots
    Best, Charles M.
    Rupert, Levi
    Killpack, Marc D.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2021, 40 (01) : 470 - 493
  • [2] Bicchi A, 2005, SPRINGER TRAC ADV RO, V15, P527
  • [3] Fast and "soft-arm" tactics
    Bicchi, A
    Tonietti, G
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2004, 11 (02) : 22 - 33
  • [4] Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait
    Blaya, JA
    Herr, H
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2004, 12 (01) : 24 - 31
  • [5] Measurement and modeling of McKibben pneumatic artificial muscles
    Chou, CP
    Hannaford, B
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (01): : 90 - 102
  • [6] Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs
    English, CE
    Russell, D
    [J]. MECHANISM AND MACHINE THEORY, 1999, 34 (01) : 7 - 25
  • [7] Gillespie MT, 2016, IEEE INT CONF ROBOT, P1095, DOI 10.1109/ICRA.2016.7487240
  • [8] Variable stiffness actuators: The user's point of view
    Grioli, Giorgio
    Wolf, Sebastian
    Garabini, Manolo
    Catalano, Manuel
    Burdet, Etienne
    Caldwell, Darwin
    Carloni, Raffaella
    Friedl, Werner
    Grebenstein, Markus
    Laffranchi, Matteo
    Lefeber, Dirk
    Stramigioli, Stefano
    Tsagarakis, Nikos
    van Damme, Michael
    Vanderborght, Bram
    Albu-Schaeffer, Alin
    Bicchi, Antonio
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (06) : 727 - 743
  • [9] Compliant Actuator Designs Review of Actuators with Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications
    Van Ham, Ronald
    Sugar, Thomas G.
    Vanderborght, Bram
    Hollander, Kevin W.
    Lefeber, Dirk
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2009, 16 (03) : 81 - 94
  • [10] Impedance-Controlled Variable Stiffness Actuator for Lower Limb Robot Applications
    Liu, Lin
    Leonhard, Steffen
    Ngo, Chuong
    Misgeld, Berno J. E.
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (02) : 991 - 1004