Deep learning models for real-life human activity recognition from smartphone sensor data

被引:4
|
作者
Garcia-Gonzalez, Daniel [1 ]
Rivero, Daniel [1 ]
Fernandez-Blanco, Enrique [1 ]
Luaces, Miguel R. [1 ]
机构
[1] Univ A Coruna, Dept Comp Sci & Informat Technol, CITIC, La Coruna 15071, Spain
关键词
HAR; CNN; LSTM; Real life; Smartphones; Sensors;
D O I
10.1016/j.iot.2023.100925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, the field of human activity recognition (HAR) is a remarkably hot topic within the scientific community. Given the low cost, ease of use and high accuracy of the sensors from different wearable devices and smartphones, more and more researchers are opting to do their bit in this area. However, until very recently, all the work carried out in this field was done in laboratory conditions, with very few similarities with our daily lives. This paper will focus on this new trend of integrating all the knowledge acquired so far into a real-life environment. Thus, a dataset already published following this philosophy was used. In this way, this work aims to be able to identify the different actions studied there. In order to perform this classification, this paper explores new designs and architectures for models inspired by the ones which have yielded the best results in the literature. More specifically, different configurations of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) have been tested, but on real-life conditions instead of laboratory ones. It is worth mentioning that the hybrid models formed from these techniques yielded the best results, with a peak accuracy of 94.80% on the dataset used.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] A comparative analysis on sensor-based human activity recognition using various deep learning techniques
    Indumathi V.
    Prabakeran S.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 919 - 938
  • [22] LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    SENSORS, 2021, 21 (05) : 1 - 25
  • [23] Activity recognition from smartphone data using weighted learning methods
    Bilal Abidine, M'hamed
    Fergani, Belkacem
    INTELLIGENZA ARTIFICIALE, 2021, 15 (01) : 1 - 15
  • [24] Design of Novel Deep Learning Models for Real-time Human Activity Recognition with Mobile Phones
    Nutter, Mark
    Crawford, Catherine H.
    Ortiz, Jorge
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [25] An Efficient and Lightweight Deep Learning Model for Human Activity Recognition on Raw Sensor Data in Uncontrolled Environment
    Choudhury, Nurul Amin
    Soni, Badal
    IEEE SENSORS JOURNAL, 2023, 23 (20) : 25579 - 25586
  • [26] A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition
    Abbaspour, Saedeh
    Fotouhi, Faranak
    Sedaghatbaf, Ali
    Fotouhi, Hossein
    Vahabi, Maryam
    Linden, Maria
    SENSORS, 2020, 20 (19) : 1 - 14
  • [27] Smartphone based human activity recognition irrespective of usage behavior using deep learning technique
    Soumya Kundu
    Manjarini Mallik
    Jayita Saha
    Chandreyee Chowdhury
    International Journal of Information Technology, 2025, 17 (1) : 69 - 85
  • [28] Machine learning and deep learning models for human activity recognition in security and surveillance: a review
    Waghchaware, Sheetal
    Joshi, Radhika
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4405 - 4436
  • [29] Deep Learning Driven Wireless Real-time Human Activity Recognition
    Guo, Hanqing
    Zhang, Nan
    Wu, Shaoen
    Yang, Qmg
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [30] SynHAR: Augmenting Human Activity Recognition With Synthetic Inertial Sensor Data Generated From Human Surface Models
    Uhlenberg, Lena
    Haeusler, Lars Ole
    Amft, Oliver
    IEEE ACCESS, 2024, 12 : 194839 - 194858